首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   13篇
化学   127篇
晶体学   1篇
力学   10篇
数学   14篇
物理学   46篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   6篇
  2019年   5篇
  2018年   8篇
  2017年   4篇
  2016年   10篇
  2015年   11篇
  2014年   9篇
  2013年   8篇
  2012年   14篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   6篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   7篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
  1968年   1篇
  1965年   1篇
  1960年   2篇
  1955年   2篇
  1935年   2篇
  1903年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
191.
UV protective effects of DNA repair enzymes and RNA lotion   总被引:1,自引:0,他引:1  
Solar UV radiation is known to cause immune suppression, believed to be a critical factor in cutaneous carcinogenesis. Although the mechanism is not entirely understood, DNA damage is clearly involved. Sunscreens function by attenuating the UV radiation that reaches the epidermis. However, once DNA damage ensues, repair mechanisms become essential for prevention of malignant transformation. DNA repair enzymes have shown efficacy in reducing cutaneous neoplasms among xeroderma pigmentosum patients. In vitro studies suggest that RNA fragments increase the resistance of human keratinocytes to UVB damage and enhance DNA repair but in vivo data are lacking. This study aimed to determine the effect of topical formulations containing either DNA repair enzymes ( Micrococcus luteus ) or RNA fragments (UVC-irradiated rabbit globin mRNA) on UV-induced local contact hypersensitivity (CHS) suppression in humans as measured in vivo using the contact allergen dinitrochlorobenzene. Immunohistochemistry was also employed in skin biopsies to evaluate the level of thymine dimers after UV. Eighty volunteers completed the CHS portion. A single 0.75 minimum erythema dose (MED) simulated solar radiation exposure resulted in 64% CHS suppression in unprotected subjects compared with unirradiated sensitized controls. In contrast, UV-induced CHS suppression was reduced to 19% with DNA repair enzymes, and 7% with RNA fragments. Sun protection factor (SPF) testing revealed an SPF of 1 for both formulations, indicating that the observed immune protection cannot be attributed to sunscreen effects. Biopsies from an additional nine volunteers showed an 18% decrease in thymine dimers by both DNA repair enzymes and RNA fragments, relative to unprotected UV-irradiated skin. These results suggest that RNA fragments may be useful as a photoprotective agent with in vivo effects comparable to DNA repair enzymes.  相似文献   
192.
Narrow-band emission is essential for applicable circularly polarized luminescence (CPL) active materials in ultrahigh-definition CP-OLEDs. One of the most promising classes of CPL active molecules, helicenes, however, typically exhibit broad emission with a large Stokes shift. We present, herein, a design strategy capitalizing on intramolecular donor-acceptor interactions between nitrogen and boron atoms to address this issue. 1,4-B,N-embedded configurationally stable single- and double helicenes were synthesized straightforwardly. Both helicenes show unprecedentedly narrow fluorescence and CPL bands (full width at half maximum between 17–28 nm, 0.07–0.13 eV) along with high fluorescence quantum yields (72–85 %). Quantum chemical calculations revealed that the relative localization of the natural transition orbitals, mainly on the rigid core of the molecule, and small values of root-mean-square displacements between S0 and S1 state geometries, contribute to the narrower emission.  相似文献   
193.
Comprehension of chemical bonding and its intertwined relation with charge carriers and heat propagation through a crystal lattice is imperative to design compounds for thermoelectric energy conversion. Here, we report the synthesis of large single crystal of new p-type cubic AgSnSbTe3 which shows an innately ultra-low lattice thermal conductivity (κlat) of 0.47–0.27 Wm−1 K−1 and a high electrical conductivity (1238 – 800 S cm−1) in the temperature range 294–723 K. We investigated the origin of the low κlat by analysing the nature of the chemical bonding and its crystal structure. The interaction between Sn(5 s)/Ag(4d) and Te(5p) orbitals was found to generate antibonding states just below the Fermi level in the electronic band structure, resulting in a softening of the lattice in AgSnSbTe3. Furthermore, the compound exhibits metavalent bonding which provides highly polarizable bonds with a strong lattice anharmonicity while maintaining the superior electrical conductivity. The electronic band structure exhibits nearly degenerate valence-band maxima that help to achieve a high Seebeck coefficient throughout the measured temperature range and, as a result, the maximum thermoelectric figure of merit reaches to ≈1.2 at 661 K in pristine single crystal of AgSnSbTe3.  相似文献   
194.
195.
Kidney stones obtained from six patients belonging to the stone belt region of India (Punjab) were analyzed for inorganic constituents using instrumental neutron activation analysis (INAA) and energy dispersive X-ray fluorescence (EDXRF) techniques. For INAA, samples were irradiated along with IAEA RM Soil 7 as reference standard in CIRUS reactor, BARC, Mumbai. Gamma activity of irradiated samples was measured using a 45% relative efficiency HPGe detector coupled to 8?k channel analyzer. EDXRF method was used for determination of concentration of Ca. The concentrations of ten elements namely Ca, Na, K, Mn, Co, Cr, Zn, Br, Sm and Cl, are reported and discussed.  相似文献   
196.
Both neural and genetic networks are significantly noisy, and stochastic effects in both cases ultimately arise from molecular events. Nevertheless, a gulf exists between the two fields, with researchers in one often being unaware of similar work in the other. In this Special Issue, we focus on bridging this gap and present a collection of papers from both fields together. For each field, the networks studied range from just a single gene or neuron to endogenous networks. In this introductory article, we describe the sources of noise in both genetic and neural systems. We discuss the modeling techniques in each area and point out similarities. We hope that, by reading both sets of papers, ideas developed in one field will give insight to scientists from the other and that a common language and methodology will develop.  相似文献   
197.
Parkinson’s disease (PD) and Alzheimer’s disease (AD) are neurodegenerative disorders that have emerged as among the serious health problems of the 21st century. The medications currently available to treat AD and PD have limited efficacy and are associated with side effects. Natural products are one of the most vital and conservative sources of medicines for treating neurological problems. Karanjin is a furanoflavonoid, isolated mainly from Pongamia pinnata with several medicinal plants, and has been reported for numerous health benefits. However, the effect of karanjin on AD and PD has not yet been systematically investigated. To evaluate the neuroprotective effect of karanjin, extensive in silico studies starting with molecular docking against five putative targets for AD and four targets for PD were conducted. The findings were compared with three standard drugs using Auto Dock 4.1 and Molegro Virtual Docker software. Additionally, the physiochemical properties (Lipinski rule of five), drug-likeness and parameters including absorption, distribution, metabolism, elimination and toxicity (ADMET) profiles of karanjin were also studied. The molecular dynamics (MD) simulations were performed with two selective karanjin docking complexes to analyze the dynamic behaviors and binding free energy at 100 ns time scale. In addition, frontier molecular orbitals (FMOs) and density-functional theory (DFT) were also investigated from computational quantum mechanism perspectives using the Avogadro-ORCA 1.2.0 platform. Karanjin complies with all five of Lipinski’s drug-likeness rules with suitable ADMET profiles for therapeutic use. The docking scores (kcal/mol) showed comparatively higher potency against AD and PD associated targets than currently used standard drugs. Overall, the potential binding affinity from molecular docking, static thermodynamics feature from MD-simulation and other multiparametric drug-ability profiles suggest that karanjin could be considered as a suitable therapeutic lead for AD and PD treatment. Furthermore, the present results were strongly correlated with the earlier study on karanjin in an Alzheimer’s animal model. However, necessary in vivo studies, clinical trials, bioavailability, permeability and safe dose administration, etc. must be required to use karanjin as a potential drug against AD and PD treatment, where the in silico results are more helpful to accelerate the drug development.  相似文献   
198.
In the present study, the degradation process of piperazine (PP) immobilized silica gel (SiPP) is investigated under dynamic conditions. The degradation of SiPP is studied with thermogravimetric analyzer (TGA). The kinetics of degradation process is analyzed by Kissinger method, Flynn–Wall–Ozawa's (FWO) method, and Deconvolution method. It is found that degradation of SiPP can be described by parallel independent two-portion process model, which includes two processing state of the system (marked by processes 1 and 2), where process 1 and 2 can be attributed to decomposition processes of organic moiety attached on silica surface. The apparent activation energy (Ea) is calculated by Flynn–Wall–Ozawa's (FWO) method and deconvolution method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号