首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1545篇
  免费   109篇
  国内免费   2篇
化学   1231篇
晶体学   3篇
力学   32篇
综合类   1篇
数学   194篇
物理学   195篇
  2024年   4篇
  2023年   28篇
  2022年   27篇
  2021年   31篇
  2020年   51篇
  2019年   34篇
  2018年   22篇
  2017年   17篇
  2016年   80篇
  2015年   75篇
  2014年   69篇
  2013年   75篇
  2012年   101篇
  2011年   102篇
  2010年   73篇
  2009年   54篇
  2008年   99篇
  2007年   103篇
  2006年   97篇
  2005年   89篇
  2004年   78篇
  2003年   57篇
  2002年   34篇
  2001年   27篇
  2000年   16篇
  1999年   21篇
  1998年   10篇
  1997年   10篇
  1996年   5篇
  1994年   6篇
  1993年   6篇
  1992年   11篇
  1991年   10篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   11篇
  1983年   8篇
  1982年   8篇
  1981年   6篇
  1980年   8篇
  1979年   6篇
  1978年   6篇
  1977年   9篇
  1976年   9篇
  1975年   5篇
  1916年   3篇
排序方式: 共有1656条查询结果,搜索用时 15 毫秒
61.
The ambitious goal of artificial photosynthesis is to develop active systems that mimic nature and use light to split water into hydrogen and oxygen. Intramolecular design concepts are particularly promising. Herein, we firstly present an intramolecular photocatalyst integrating a perylene-based light-harvesting moiety and a catalytic rhodium center ( RhIIIphenPer ). The excited-state dynamics were investigated by means of steady-state and time-resolved absorption and emission spectroscopy. The studies reveal that photoexcitation of RhIIIphenPer yields the formation of a charge-separated intermediate, namely RhIIphenPer ⋅ + , that results in a catalytically active species in the presence of protons.  相似文献   
62.
Exhaled aliphatic aldehydes were proposed as non-invasive biomarkers to detect increased lipid peroxidation in various diseases. As a prelude to clinical application of the multicapillary column–ion mobility spectrometry for the evaluation of aldehyde exhalation, we, therefore: (1) identified the most abundant volatile aliphatic aldehydes originating from in vitro oxidation of various polyunsaturated fatty acids; (2) evaluated emittance of aldehydes from plastic parts of the breathing circuit; (3) conducted a pilot study for in vivo quantification of exhaled aldehydes in mechanically ventilated patients. Pentanal, hexanal, heptanal, and nonanal were quantifiable in the headspace of oxidizing polyunsaturated fatty acids, with pentanal and hexanal predominating. Plastic parts of the breathing circuit emitted hexanal, octanal, nonanal, and decanal, whereby nonanal and decanal were ubiquitous and pentanal or heptanal not being detected. Only pentanal was quantifiable in breath of mechanically ventilated surgical patients with a mean exhaled concentration of 13 ± 5 ppb. An explorative analysis suggested that pentanal exhalation is associated with mechanical power—a measure for the invasiveness of mechanical ventilation. In conclusion, exhaled pentanal is a promising non-invasive biomarker for lipid peroxidation inducing pathologies, and should be evaluated in future clinical studies, particularly for detection of lung injury.  相似文献   
63.
The effects of lattice motion and reconstruction on the dissociation of methane on Ni(111) are explored, using both electronic structure theory and quantum dynamical calculations. We show that during the reaction, the Ni lattice reconstructs, effectively lowering the barrier to reaction, in contrast with earlier models of this process.  相似文献   
64.
One of the most applied reaction types to synthesize shape-persistent organic cage compounds is the imine condensation reaction and it is assumed that the formed cages are thermodynamically controlled products due to the reversibility of the imine condensation. However, most of the synthesized imine cages reported are formed as precipitate from the reaction mixture and therefore rather may be kinetically controlled products. There are even examples in literature, where resulting cages are not soluble at all in common organic solvents to characterize or study their formation by NMR spectroscopy in solution. Here, a triptycene triamine containing three solubilizing n-hexyloxy chains has been used to synthesize soluble congeners of prior insoluble cages. This allowed us to study the formation as well as the reversibility of cage formation in solution by investigating exchange of building blocks between the cages and deuterated derivatives thereof.  相似文献   
65.
Recently, porous photocatalytically active block copolymer membranes were introduced, based on heterogenized molecular catalysts. Here, we report the integration of the photosensitizer, i. e., the light absorbing unit in an intermolecular photocatalytic system into block copolymer membranes in a covalent manner. We study the resulting structure and evaluate the orientational mobility of the photosensitizer as integral part of the photocatalytic system in such membranes. To this end we utilize transient absorption anisotropy, highlighting the temporal reorientation of the transition dipole moment probed in a femtosecond pump-probe experiment. Our findings indicate that the photosensitizer is rigidly bound to the polymer membrane and shows a large heterogeneity of absolute anisotropy values as a function of location probed within the matrix. This reflects the sample inhomogeneity arising from different protonation states of the photosensitizer and different intermolecular interactions of the photosensitizers within the block copolymer membrane scaffold.  相似文献   
66.
A series of three Ru(II) polypyridine complexes was investigated for the selective photocatalytic oxidation of NAD(P)H to NAD(P)+ in water. A combination of (time-resolved) spectroscopic studies and photocatalysis experiments revealed that ligand design can be used to control the mechanism of the photooxidation: For prototypical Ru(II) complexes a 1O2 pathway was found. Rudppz ([(tbbpy)2Ru(dppz)]Cl2, tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine, dppz=dipyrido[3,2-a:2′,3′-c]phenazine), instead, initiated the cofactor oxidation by electron transfer from NAD(P)H enabled by supramolecular binding between substrate and catalyst. Expulsion of the photoproduct NAD(P)+ from the supramolecular binding site in Rudppz allowed very efficient turnover. Therefore, Rudppz permits repetitive selective assembly and oxidative conversion of reduced naturally occurring nicotinamides by recognizing the redox state of the cofactor under formation of H2O2 as additional product. This photocatalytic process can fuel discontinuous photobiocatalysis.  相似文献   
67.
This review surveys recent developments in the field of electrochemically generated gradients. The gradual variation of properties, which is a key characteristic of gradients, is of eminent importance in technology, for example, directional wetting, as well as biology, for example, chemotaxis. Electrochemical techniques offer many benefits, such as the generation of dynamic solution and surface gradients, integration with electronics, and compatibility with automation. An overview is given of newly developed methods, from purely electrochemical techniques to the combination of electrochemistry with other methods. Electrochemically fabricated gradients are employed extensively for biological and technological applications, such as high‐throughput screening, high‐throughput deposition, and device development, all of which are covered herein. Especially promising are developments towards the study and control of dynamic phenomena, such as the directional motion of molecules, droplets, and cells.  相似文献   
68.
Photochemical activation of [(PNNH)Rh(N3)] (PNNH=6‐di‐(tert‐butyl)phosphinomethyl‐2,2′‐bipyridine) complex 2 produced the paramagnetic (S=1/2), [(PNN)Rh?N.‐Rh(PNN)] complex 3 (PNN?=methylene‐deprotonated PNNH), which could be crystallographically characterized. Spectroscopic investigation of 3 indicates a predominant nitridyl radical (.N2?) character, which was confirmed computationally. Complex 3 reacts selectively with CO, producing two equivalents of [(PNN)RhI(CO)] complex 4 , presumably by nitridyl radical N,N‐coupling.  相似文献   
69.
The adsorption of organic molecules onto the close‐packed facets of coinage metals is studied, and how accurately adsorption heights can be described by using recent advances of the van der Waals density functional (vdWDF), with optPBE/vdWDF, optB86b/vdWDF, vdWDF2, and rev/vdWDF2 functionals is illustrated. The adsorption of two prototypical aromatic hydrocarbons is investigated, and the calculated adsorption heights are compared to experimental literature values from normal incident X‐ray standing wave absorption and a state‐of‐the‐art semi‐empirical method. It is shown that both the optB86b/vdWDF and rev/vdWDF2 functionals describe adsorption heights with an accuracy of 0.1 Å, compared to experimental values, and are concluded as reliable methods of choice for related systems.  相似文献   
70.
Most real core-shell nanoparticle (CSNP) samples deviate from an ideal core-shell structure potentially having significant impact on the particle properties. An ideal structure displays a spherical core fully encapsulated by a shell of homogeneous thickness, and all particles in the sample exhibit the same shell thickness. Therefore, analytical techniques are required that can identify and characterize such deviations. This study demonstrates that by analysis of the inelastic background in X-ray photoelectron spectroscopy (XPS) survey spectra, the following types of deviations can be identified and quantified: the nonuniformity of the shell thickness within a nanoparticle sample and the incomplete encapsulation of the cores by the shell material. Furthermore, CSNP shell thicknesses and relative coverages can be obtained. These results allow for a quick and straightforward comparison between several batches of a specific CSNP, different coating approaches, and so forth. The presented XPS methodology requires a submonolayer distribution of CSNPs on a substrate. Poly(tetrafluoroethylene)-poly(methyl methacrylate) and poly(tetrafluoroethylene)-polystyrene polymer CSNPs serve as model systems to demonstrate the applicability of the approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号