首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   2篇
  国内免费   1篇
化学   115篇
数学   15篇
物理学   115篇
  2016年   2篇
  2012年   2篇
  2011年   7篇
  2010年   6篇
  2009年   5篇
  2008年   16篇
  2007年   6篇
  2006年   4篇
  2005年   9篇
  2004年   18篇
  2003年   5篇
  2002年   5篇
  2001年   7篇
  2000年   17篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   8篇
  1993年   7篇
  1992年   11篇
  1991年   9篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   6篇
  1983年   2篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   6篇
  1977年   6篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1970年   2篇
  1969年   1篇
  1967年   2篇
  1965年   2篇
  1963年   2篇
  1958年   1篇
  1956年   1篇
  1955年   2篇
  1943年   2篇
排序方式: 共有245条查询结果,搜索用时 15 毫秒
141.
The diffusion of gases in dense polymers, above and below the glass-transition temperature, is described with a new Transition State Theory model that is based on the concept that the dynamics of small molecules dissolved in dense polymers is separated from the structural relaxation of the dense polymers. The model is used to study the dynamics of rare gases dissolved in atomistic micro-structures of four polymers at 300 K: poly(dimethylsiloxane), poly(isobutylene), atactic poly(vinylchloride) and the polycarbonate of 4,4′-isopropylidenediphenol (bisphenol-A). Short-time-scale MD runs (5 ps) are used to characterize the elastic thermal motion of the host matrix; this information on mobility is then used for a stochastic simulation of solute dynamics up to ca. 1ms. All dissolved molecules show similar behavior by displaying three time regimes: a short-time, high-mobility domain, an intermediate time domain of anomalous diffusion, and a diffusive regime at long times. From the long-time data diffusion coefficients are estimated; comparison with experimental data results in good agreement.  相似文献   
142.
A detailed static atomistic model of dense, glassy polystyrene is simulated using a well established technique that previously proved successful for simple vinyl polymers. Initial chain conformations that are generated using a Monte Carlo technique including periodic continuation conditions are “relaxed” by potential energy minimization. In total 24 microstructures at densities of 1,07 g/cm3 were obtained with a cube-edge length of 18,65 Å. Detailed analysis of the minimized structures indicates that intermolecular packing influences create a large variety of chain conformations different from the purely intramolecular ground states. The systems are amorphous, exhibiting random coil behavior. The described structures have been used for a quasistatic simulation of localized motions. These motions include stepwise rotation and oscillation of the phenyl groups. The frequency distribution for the simulated ring motions covers many orders of magnitude. It is very rare that an energy barrier with a reorientation angle indicating a ring “flip” is overcome. Motions with small reorientation of the phenyl rings, and therefore not leading to a ring “flip”, dominate with an average reorientation angle of 16° (±12°). The intermolecular effects of the analyzed processes were found very important and far-reaching, widely influencing the cooperative motions of molecular groups.  相似文献   
143.
Hydrogenic (two-body) systems are the only atomic systems for which uncertainties in calculations of the energy levels approach the current state of the art in frequency measurement. This article discusses progress in the theory and measurement of transition frequencies in hydrogenic systems. These studies have relevance to the determination of fundamental constants and the testing of physical theories, especially quantum electrodynamics. A set of high accuracy calculable frequency standards could also be realized by using hydrogenic systems.  相似文献   
144.
We report on muonium (Mu) emission into vacuum following μ(+) implantation in mesoporous thin SiO(2) films. We obtain a yield of Mu into vacuum of (38±4)% at 250 K and (20±4)% at 100 K for 5 keV μ(+) implantation energy. From the implantation energy dependence of the Mu vacuum yield we determine the Mu diffusion constants in these films: D(Mu)(250 K)=(1.6±0.1)×10(-4) cm(2)/s and D(Mu)(100 K)=(4.2±0.5)×10(-5) cm(2)/s. Describing the diffusion process as quantum mechanical tunneling from pore to pore, we reproduce the measured temperature dependence ~T(3/2) of the diffusion constant. We extract a potential barrier of (-0.3±0.1) eV which is consistent with our computed Mu work function in SiO(2) of [-0.3,-0.9] eV. The high Mu vacuum yield, even at low temperatures, represents an important step toward next generation Mu spectroscopy experiments.  相似文献   
145.
This paper describes the mechanical properties of thin-walled, liquid-filled composite capsules consisting of calcium pectinate and shellac. In a series of experiments we measured the deformation of these particles in a spinning drop apparatus. For different pH-values we studied the elastic properties of these particles and compared the obtained results with the mechanical response measured by squeezing capsule experiments. In analogy to these experiments, we also investigated liquid-filled unloaded calcium pectinate capsules without the addition of shellac. The deformation properties of these experiments and the surface Young moduli were in good agreement. Furthermore we investigated the liquid-filled calcium pectinate and the composite capsules by NMR microscopy. These experiments allowed investigations of the membrane thickness and the kinetics of membrane growing. Additional characterizations by stress controlled small amplitude surface shear experiments of similar composed gel layers provided coherent results for the surface Young modulus.  相似文献   
146.
The strain hardening modulus, defined as the slope of the increasing stress with strain during large strain uniaxial plastic deformation, was extracted from a recently proposed constitutive model for the finite nonlinear viscoelastic deformation of polymer glasses, and compared to previously published experimental compressive true stress versus true strain data of glassy crosslinked poly(methyl methacrylate) (PMMA). The model, which treats strain hardening predominantly as a viscous process, with only a minor elastic contribution, agrees well with the experimentally observed dependence of the strain hardening modulus on strain rate and crosslink density in PMMA, and, in addition, predicts the well-known decrease of the strain hardening modulus in polymer glasses with temperature. General scaling aspects of continuum modeling of strain hardening behavior in polymer materials are also presented. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1464–1472, 2010  相似文献   
147.
We propose a new scalable quantum computer architecture based on endohedral fullerene molecules. Qubits are encoded in the nuclear spins of the endohedral atoms, which posses even longer coherence times than the electron spins which are used as the qubits in previous proposals. To address the individual qubits, we use the hyperfine interaction, which distinguishes two modes (active and passive) of the nuclear spin. Two-qubit quantum gates are effectively implemented by employing the electronic dipolar interaction between adjacent molecules. The electron spins also assist in the qubit initialization and readout. Our architecture should be significantly easier to implement than earlier proposals for spin-based quantum computers, such as the concept of Kane [B.E. Kane, Nature 393 (1998) 133].  相似文献   
148.
Skeletal Ni, produced by the selective leaching of Al from a Ni/Al alloy, has been successfully employed in the catalytic dehydrogenation of various amine-borane adducts. The combination of low cost and facile single-step synthesis make this system a potentially attractive alternative to the previously described precious metal and other first-row metal catalysts. The heterogeneous nature of the catalyst facilitates convenient product purification, and this is the first such system to be based on a first-row transition metal. Catalytic dehydrocoupling of Me(2)NH·BH(3) (1) and Et(2)NH·BH(3) (5) was demonstrated using 5 mol % skeletal Ni catalyst at 20 °C and produced [Me(2)N-BH(2)](2) (2) and [Et(2)N-BH(2)](2)/Et(2)N═BH(2) (6), respectively. The related adduct iPr(2)NH·BH(3) (7) was also dehydrogenated to afford iPr(2)N═BH(2) (8) but with significant catalyst deactivation. Catalytic dehydrocoupling of MeNH(2)·BH(3) (9) was found to yield the cyclic triborazane [MeNH-BH(2)](3) (10) as the major product, whereas high molecular weight poly(methylaminoborane) [MeNH-BH(2)](n) (11) (M(w) = 78?000 Da, PDI = 1.52) was formed when stoichiometric quantities of Ni were used. Similar reactivity was also observed with NH(3)·BH(3) (12), which produced cyclic oligomers and insoluble polymers, [NH(2)-BH(2)](x) (14), under catalytic and stoichiometric Ni loadings, respectively. Catalyst recycling was hindered by gradual poisoning. A study of possible catalyst poisons suggested that BH(3) was the most likely surface poison, in line with previous work on colloidal Rh catalysts. Catalytic dehydrogenation of amine-borane adducts using skeletal Cu and Fe was also explored. Skeletal Cu was found to be a less active dehydrogenation catalyst for amine-borane adducts but also yielded poly(methylaminoborane) under stoichiometric conditions on reaction with MeNH(2)·BH(3) (9). Skeletal Fe was found to be completely inactive toward amine-borane dehydrogenation.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号