首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  国内免费   4篇
化学   25篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
11.
Bandgap engineering in donor–acceptor conjugated microporous polymers (CMPs) is a potential way to increase the solar-energy harvesting towards photochemical water splitting. Here, the design and synthesis of a series of donor–acceptor CMPs [tetraphenylethylene (TPE) and 9-fluorenone (F) as the donor and the acceptor, respectively], F0.1CMP , F0.5CMP , and F2.0CMP , are reported. These CMPs exhibited tunable bandgaps and photocatalytic hydrogen evolution from water. The donor–acceptor CMPs exhibited also intramolecular charge-transfer (ICT) absorption in the visible region (λmax=480 nm) and their bandgap was finely tuned from 2.8 to 2.1 eV by increasing the 9-fluorenone content. Interestingly, they also showed emissions in the 540–580 nm range assisted by the energy transfer from the other TPE segments (not involved in charge-transfer interactions), as evidenced from fluorescence lifetime decay analysis. By increasing the 9-fluorenone content the emission color of the polymer was also tuned from green to red. Photocatalytic activities of the donor–acceptor CMPs ( F0.1CMP , F0.5CMP , and F2.0CMP ) are greatly enhanced compared to the 9-fluorenone free polymer ( F0.0CMP ), which is essentially due to improved visible-light absorption and low bandgap of donor–acceptor CMPs. Among all the polymers F0.5CMP with an optimum bandgap (2.3 eV) showed the highest H2 evolution under visible-light irradiation. Moreover, all polymers showed excellent dispersibility in organic solvents and easy coated on the solid substrates.  相似文献   
12.
Abstract

Latent metathesis catalysts equipped with boronate esters of diols as exchangeable end-groups on their NHC ligands and an S-chelated ruthenium-benzylidene core were synthesized. The stable S-chelated ruthenium complexes underwent hydrolysis under mild acidic conditions, allowing easy exchange of terminal units by several 1,2- and 1,3-diols, without degrading the central ruthenium benzylidene. Using this strategy, we also prepared metathesis catalysts equipped with diallyl substrates at the termini that showed concentration dependency on RCM reactions. Notably, the larger dendritic catalysts were more efficient at the more dilute condition.  相似文献   
13.
The –ONNO– tetradentate Schiff base ligandN,N’-bis(2-hydroxy-3-methoxybenzaldehyde)benzene-1,2-diamine (HMBBD) has been synthesized. The ligand was attached to copper (Cu-HMBBD) in methanol under N2 at...  相似文献   
14.
The therapeutic and immunological properties of biopharmaceuticals are governed by the glycoforms contained in them. Thus, bioinformatics tools capable of performing comprehensive characterization of glycans are significantly important to the biopharma industry. The primary structural elucidation of glycans using mass spectrometry is tricky and tedious in terms of spectral interpretation. In this study, the biosimilars of a therapeutic monoclonal antibody and an Fc-fusion protein with moderate and heavy glycosylation, respectively, were employed as representative biopharmaceuticals for released glycan analysis using liquid chromatography–tandem mass spectrometry instead of conventional mass spectrometry-based analysis. SimGlycan® is a software with proven ability to process tandem MS data for released glycans could identify eight additional glycoforms in Fc-fusion protein biosimilar, which were not detected during mass spectrometry analysis of released glycans or glyco-peptide mapping of the same molecule. Thus, liquid chromatography–tandem mass spectrometry analysis of released glycans not only complements conventional liquid chromatography–mass spectrometry-based glycan profiling but can also identify additional glycan structures that may otherwise be omitted during conventional liquid chromatography–tandem mass spectrometry based analysis of mAbs. The mass spectrometry data processing tools, such as PMI Byos™, SimGlycan®, etc., can display pivotal analytical capabilities in automated liquid chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry-based glycan analysis workflows, especially for high-throughput structural characterization of glycoforms in biopharmaceuticals.  相似文献   
15.
16.
Even though halogen bonding—the noncovalent interaction between electrophilic halogen substituents and Lewis bases—has now been established in molecular recognition and catalysis, its use in enantioselective processes is still very rarely explored. Herein, we present the synthesis of chiral bidentate halogen‐bond donors based on two iodoimidazolium units with rigidly attached chiral sidearms. With these Lewis acids, chiral recognition of a racemic diamine is achieved in NMR studies. DFT calculations support a 1:1 interaction of the halogen‐bond donor with both enantiomers and indicate that the chiral recognition is based on a different spatial orientation of the Lewis bases in the halogen‐bonded complexes. In addition, moderate enantioselectivity is achieved in a Mukaiyama aldol reaction with a preorganized variant of the chiral halogen‐bond donor. This represents the first case in which asymmetric induction was realized with a pure halogen‐bond donor lacking any additional active functional groups.  相似文献   
17.
18.
19.
20.
新的聚苯乙烯负载锌化合物:高效苯酚氧化催化剂(英文)   总被引:1,自引:0,他引:1  
The novel recyclable free –ONNO– tetradentate Schiff base ligand N,N′‐bis(2‐hydroxy‐3‐ methox‐ybenzaldehyde)4‐methylbenzene‐1,2‐diamine (3‐MOBdMBn) was synthesized. Complexation of this ligand with zinc(3‐MOBdMBn‐Zn) was performed, and the catalytic activity of the complex was evaluated. The polymer‐supported analog of this complex(P‐3‐MOBdMBn‐Zn) was synthesized, and its catalytic activity was studied. These free and polymer‐anchored zinc complexes were prepared by the reactions of metal solutions with one molar equivalent of unsupported 3‐MOBdMBn or P‐3‐MOBdMBn in methanol under nitrogen. The catalytic activity of 3‐MOBdMBn‐Zn and P‐3‐MOBdMBn‐Zn was evaluated in phenol oxidation. The activity of P‐3‐MOBdMBn‐Zn was signif‐icantly affected by the polymer support, and the rate of phenol conversion was around 50% for polystyrene‐supported 3‐MOBdMBn. The experimental results indicated that the reaction rate was affected by the polymer support, and the rate of phenol conversion was 1.64 μmol/(L·s) in the presence of polystyrene‐supported 3‐MOBdMBn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号