首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1452篇
  免费   46篇
  国内免费   7篇
化学   1169篇
晶体学   15篇
力学   9篇
数学   52篇
物理学   260篇
  2023年   11篇
  2021年   9篇
  2020年   29篇
  2019年   26篇
  2018年   10篇
  2017年   5篇
  2016年   25篇
  2015年   26篇
  2014年   23篇
  2013年   76篇
  2012年   76篇
  2011年   97篇
  2010年   43篇
  2009年   47篇
  2008年   91篇
  2007年   69篇
  2006年   95篇
  2005年   85篇
  2004年   87篇
  2003年   66篇
  2002年   68篇
  2001年   22篇
  2000年   21篇
  1999年   18篇
  1998年   16篇
  1997年   12篇
  1996年   17篇
  1995年   10篇
  1994年   14篇
  1993年   18篇
  1992年   11篇
  1991年   14篇
  1990年   14篇
  1989年   8篇
  1988年   8篇
  1987年   14篇
  1986年   9篇
  1985年   25篇
  1984年   22篇
  1983年   11篇
  1982年   24篇
  1981年   17篇
  1980年   14篇
  1979年   20篇
  1978年   11篇
  1977年   5篇
  1976年   8篇
  1975年   15篇
  1974年   12篇
  1973年   6篇
排序方式: 共有1505条查询结果,搜索用时 31 毫秒
81.
The selective formation of dialkyl formamides through photochemical CO2 reduction was developed as a means of utilizing CO2 as a C1 building block. Photochemical CO2 reduction catalyzed by a [Ru(bpy)2(CO)2]2+ (bpy: 2,2′‐bipyridyl)/[Ru(bpy)3]2+/Me2NH/Me2NH2+ system in CH3CN selectively produced dimethylformamide. In this process a ruthenium carbamoyl complex ([Ru(bpy)2(CO)(CONMe2)]+) formed by the nucleophilic attack of Me2NH on [Ru(bpy)2(CO)2]2+ worked as the precursor to DMF. Thus Me2NH acted as both the sacrificial electron donor and the substrate, while Me2NH2+ functioned as the proton source. Similar photochemical CO2 reductions using R2NH and R2NH2+ (R=Et, nPr, or nBu) also afforded the corresponding dialkyl formamides (R2NCHO) together with HCOOH as a by‐product. The main product from the CO2 reduction transitioned from R2NCHO to HCOOH with increases in the alkyl chain length of the R2NH. The selectivity between R2NCHO and HCOOH was found to depend on the rate of [Ru(bpy)2(CO)(CONR2)]+ formation.  相似文献   
82.
We derived a new expression for the electrostatic interaction of three-dimensional charge-neutral systems with two-dimensional periodic boundary conditions (slab geometry) using a fast multipole method (FMM). Contributions from all the image cells are expressed as a sum of real and reciprocal space terms, and a self-interaction term. The reciprocal space contribution consists of two parts: zero and nonzero terms of the absolute value of the reciprocal lattice vector. To test the new expressions, electrostatic interactions were calculated for a randomly placed charge distribution in a cubic box and liquid water produced by molecular dynamics calculation. The accuracy could be controlled by the degree of expansion of the FMM. In the present expression, the computational complexity of the electrostatic interaction of N-particle systems is order N, which is superior to that of the conventional two-dimensional periodic Ewald method for a slab geometry and the particle mesh Ewald method with a large empty space at an interface of the unit cell. © 2020 Wiley Periodicals, Inc.  相似文献   
83.
Single-ligand-based electronically conductive porous coordination polymers/metal–organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π-conjugated EC-MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11-hexahydrotriphenylene, THQ=tetrahydroxy-1,4-quinone). The modulated conductivity (σ≈2.53×10−5 S cm−1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g−1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.  相似文献   
84.
Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity (σ≈2.53×10?5 S cm?1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g?1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.  相似文献   
85.
The silaboration of [1.1.1]propellane enables direct introduction of B and Si functional groups onto the bicyclo[1.1.1]pentane (BCP) scaffold in high yield under mild, additive‐free conditions. The silaborated BCP can be obtained on a gram‐scale in a single step without the need for column‐chromatographic purification, and is storable and easy to handle, providing a versatile synthetic intermediate for BCP derivatives. We also describe various conversions of the C?B/C?Si bonds on the BCP scaffold, including development of a modified Suzuki–Miyaura cross‐coupling reaction at the highly sterically hindered bridgehead sp3 carbon center of the BCP skeleton using a combination of highly activated BCP boronic esters, copper(I) oxide, and a PdCl2(dppf) catalyst system.  相似文献   
86.
Lolitrems are tremorgenic indole diterpenes that exhibit a unique 5/6 bicyclic system of the indole moiety. Although genetic analysis has indicated that the prenyltransferase LtmE and the cytochrome P450 LtmJ are involved in the construction of this unique structure, the detailed mechanism remains to be elucidated. Herein, we report the reconstitution of the biosynthetic pathway for lolitrems employing a recently established genome‐editing technique for the expression host Aspergillus oryzae. Heterologous expression and bioconversion of the various intermediates revealed that LtmJ catalyzes multistep oxidation to furnish the lolitrem core. We also isolated the key reaction intermediate with an epoxyalcohol moiety. This observation allowed us to establish the mechanism of radical‐induced cyclization, which was firmly supported by density functional theory calculations and a model experiment with a synthetic analogue.  相似文献   
87.
We synthesised palladium and platinum complexes possessing cyclic and acyclic pincer‐type polyaromatic ligands and investigated their structural effect on the catalysis. The pincer‐type bis(6‐arylpyridin‐2‐yl)benzene skeleton was constructed via Kröhnke pyridine synthesis under transition metal‐free conditions on gram‐scale quantity. Ligand structure significantly influenced catalytic activity toward the platinum‐catalysed hydrosilylation of diphenyl acetylenes, despite the ligand‐independence of the conformations and electronic properties of these complexes.  相似文献   
88.
Serinol nucleic acid (SNA) is a promising candidate for nucleic acid‐based molecular probes and drugs due to its high affinity for RNA. Our previous work revealed that incorporation of 2,6‐diaminpurine (D), which can form three hydrogen bonds with uracil, into SNA increases the melting temperature of SNA‐RNA duplexes. However, D incorporation into short self‐complementary regions of SNA promoted self‐dimerization and hindered hybridization with RNA. Here we synthesized a SNA monomer of 2‐thiouracil (sU), which was expected to inhibit base pairing with D by steric hindrance between sulfur and the amino group. To prepare the SNA containing D and sU in high yield, we customized the protecting groups on D and sU monomers that can be readily deprotected under acidic conditions. Incorporation of D and sU into SNA facilitated stable duplex formation with target RNA by suppressing the self‐hybridization of SNA and increasing the stability of the heteroduplex of SNA and its complementary RNA. Our results have important implications for the development of SNA‐based probes and nucleic acid drugs.  相似文献   
89.
90.
This paper deals with the analysis of the temperature dependence of high-frequency EMR (HF-EMR) spectra due to Mn3+ and Mn4+ ions in the lithium manganese spinel LiMn2O4. A range of powder samples obtained by the sol-gel method with calcinations in several temperature ranges were prepared for this study. Based on the initial characterization carried out by a number of techniques, the physicochemical and structural properties of the samples were earlier determined. Independently, temperature magnetization and HF-EMR measurements were carried out. The EMR spectra vary strongly between samples, indicating possible structural or chemical changes. Quantitative analysis of the temperature dependence of the HF-EMR spectra due to Mn3+ and Mn4+ ions in LiMn2O4 is presented in this paper. The spectral analysis concerns the line shape, linewidth, intensity and g-factors. Fittings using the Lorentzian spectral shape and, to a certain extent, the Gaussian spectral shape have been carried out in order to parameterize the temperature dependence of the HF-EMR spectra. This parameterization of the HF-EMR experimental data enables a deeper characterization of the samples. Subsequently, a better insight into the role of the Mn3+ and Mn4+ ions in accounting for the characteristics most suitable for application of LiMn2O4 as a cathode material may be gained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号