排序方式: 共有158条查询结果,搜索用时 15 毫秒
101.
Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations. 相似文献
102.
Bharti Khungar Ankita Roy Anand Kumar Biswajit Sadhu Mahesh Sundararajan 《International journal of quantum chemistry》2017,117(12)
A plethora of chemical reactions is redox driven processes. The conversion of toxic and highly soluble U(VI) complexes to nontoxic and insoluble U(IV) form are carried out through proton coupled electron transfer by iron containing cytochromes and mineral surfaces such as machinawite. This redox process takes place through the formation of U(V) species which is unstable and immediately undergo the disproportionation reaction. Thus, theoretical methods are extremely useful to understand the reduction process of U(VI) to U(V) species. We here have carried out the structures and reduction properties of several U(VI) to U(V) complexes using a variety of electronic structure methods. Due to the lack of experimental ionization energies for uranyl (UO2(V)‐UO2(VI)) couple, we have benchmarked the current and popularly used density functionals and cost effective ab initio methods against the experimental electron detachment energies of [UO2F4]1‐/2‐ and [UO2Cl4]1‐/2‐. We find that electron detachment energy of U(VI) predicted by RI‐MP2 level on the BP86 geometries correlate nicely with the experimental and CCSD(T) data. Based on our benchmark studies, we have predicted the structures and electron detachment energies of U(V) to U(VI) species for a series of uranium complexes at the RI‐MP2//BP86 level which are experimentally inaccessible till date. We find that the redox active molecular orbital is ligand centered for the oxidation of U(VI) species, where it is metal centered (primarily f‐orbital) for the oxidation of U(V) species. Finally, we have also calculated the detachment energies of a known uranyl [UO2]1+ complex whose X‐ray crystal structures of both oxidation states are available. The large bulky nature of the ligand stabilizing the uncommon U(V) species which cannot be routinely studied by present day CCSD(T) methods as the system size are more than 20–30 atoms. The success of our efficient computational strategy can be experimentally verified in the near future for the complex as the structures are stable in gas phase which can undergo oxidation. 相似文献
103.
It is necessary to establish the rate law of adsorbate-adsorbent interactions to understand the mechanism by which the solute accumulates on the surface of a solid and gets adsorbed to the surface. A number of theoretical models and equations are available for the purpose and the best fit of the experimental data to any of these models is interpreted as giving the appropriate kinetics for the adsorption process. There is a spate of publications during the last few years on adsorption of various metals and other contaminants on conventional and non-conventional adsorbents, and many have tried to work out the kinetics. This has resulted from the wide interest generated on using adsorption as a practical method for treating contaminated water. In this review, an attempt has been made to discuss the kinetics of adsorption of metal ions on inorganic solids on the basis of published reports. A variety of materials like clays and clay minerals, zeolites, silica gel, soil, activated alumina, inorganic polymer, inorganic oxides, fly ash, etc. have been considered as the adsorbents and cations and anions of As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn as adsorbate have been covered in this review. The majority of the interactions have been divided into either pseudo first order or second order kinetics on the basis of the best fit obtained by various groups of workers, although second order kinetics has been found to be the most predominant one. The discussion under each category is carried out with respect to each type of metal ion separately. Application of models as given by the Elovich equation, intra-particle diffusion and liquid film diffusion has also been shown by many authors and these have also been reviewed. The time taken for attaining equilibrium in each case has been considered as a significant parameter and is discussed almost in all the cases. The values of the kinetic rate coefficients indicate the speed at which the metal ions adsorb on the materials and these are discussed in all available cases. The review aims to give a comprehensive picture on the studies of kinetics of adsorption during the last few years. 相似文献
104.
Susmita Kundu Urmila Kar K. Chakrabarty 《The European physical journal. Special topics》2013,222(3-4):699-709
DC shunt and series drives are extensively used in the industry. The occurrence of bifurcation and chaos in dc shunt and permanent magnet drives are well known. It is observed that the behavior of the drives not only depends on the value of system parameters but also on the value of initial conditions. Multiple attractors can exist for same parameter value. Different choice of initial conditions gives different periodic behavior of the system. The drive is intended to operate in a parameter range to give period-1 behavior. We report the existence of sub- harmonic oscillations in the period-1 region of the bifurcation diagram along with co-existing attractor with fractal basin boundaries in PWM controlled dc series drives. The series drive is extensively used in electric traction and other applications. The dc drives are run with dc input voltage. This dc voltage may be derived from a dc source or an ac source with a rectifier. The dc series drive shows different bifurcation behavior when different types of input voltage and switching elements are used. The existence of period-1, period-2 and period-4 orbits are observed with different initial conditions in the desired period-1 region of the bifurcation diagram. The dependence of system’s behavior on initial condition may render the system’s behavior unpredictable. These phenomena may have serious implication in performance. 相似文献
105.
Ananta Dey Manisha Yadav Deepak Kumar Anik Kumar Dey Sweety Samal Subhash Tanwar Debrupa Sarkar Sumit Kumar Pramanik Susmita Chaudhuri Amitava Das 《Chemical science》2022,13(34):10103
Bacteria organized in biofilms show significant tolerance to conventional antibiotics compared to their planktonic counterparts and form the basis for chronic infections. Biofilms are composites of different types of extracellular polymeric substances that help in resisting several host-defense measures, including phagocytosis. These are increasingly being recognized as a passive virulence factor that enables many infectious diseases to proliferate and an essential contributing facet to anti-microbial resistance. Thus, inhibition and dispersion of biofilms are linked to addressing the issues associated with therapeutic challenges imposed by biofilms. This report is to address this complex issue using a self-assembled guanidinium–Ag(0) nanoparticle (AD-L@Ag(0)) hybrid gel composite for executing a combination therapy strategy for six difficult to treat biofilm-forming and multidrug-resistant bacteria. Improved efficacy was achieved primarily through effective biofilm inhibition and dispersion by the cationic guanidinium ion derivative, while Ag(0) contributes to the subsequent bactericidal activity on planktonic bacteria. Minimum Inhibitory Concentration (MIC) of the AD-L@Ag(0) formulation was tested against Acinetobacter baumannii (25 μg mL−1), Pseudomonas aeruginosa (0.78 μg mL−1), Staphylococcus aureus (0.19 μg mL−1), Klebsiella pneumoniae (0.78 μg mL−1), Escherichia coli (clinical isolate (6.25 μg mL−1)), Klebsiella pneumoniae (clinical isolate (50 μg mL−1)), Shigella flexneri (clinical isolate (0.39 μg mL−1)) and Streptococcus pneumoniae (6.25 μg mL−1). Minimum bactericidal concentration, and MBIC50 and MBIC90 (Minimum Biofilm Inhibitory Concentration at 50% and 90% reduction, respectively) were evaluated for these pathogens. All these results confirmed the efficacy of the formulation AD-L@Ag(0). Minimum Biofilm Eradication Concentration (MBEC) for the respective pathogens was examined by following the exopolysaccharide quantification method to establish its potency in inhibition of biofilm formation, as well as eradication of mature biofilms. These effects were attributed to the bactericidal effect of AD-L@Ag(0) on biofilm mass-associated bacteria. The observed efficacy of this non-cytotoxic therapeutic combination (AD-L@Ag(0)) was found to be better than that reported in the existing literature for treating extremely drug-resistant bacterial strains, as well as for reducing the bacterial infection load at a surgical site in a small animal BALB/c model. Thus, AD-L@Ag(0) could be a promising candidate for anti-microbial coatings on surgical instruments, wound dressing, tissue engineering, and medical implants.Dispersion of biofilms that protect bacteria and its subsequent killing in the planktonic state are effectively achieved by a guanidinium–Ag(0) nanocomposite. 相似文献
106.
This paper presents the ion-solvations in biologically important metal ion like magnesium in lactose–water mixed solvent systems at different temperatures. The investigation involves the measurement of ultrasonic velocity, density and viscosity of different concentration of magnesium sulphate in various proportions of lactose–water mixed solvents at temperature 303.15, 308.15, 313.15 K and at atmospheric pressure. Different thermo-acoustic parameters have been calculated from the measured values and have been discussed in the light of ion–solvent interactions. 相似文献
107.
Dieter Fischer Karin Sahre Mona Abdelrhim Brigitte Voit Veera B. Sadhu Jürgen Pionteck Hartmut Komber Jan Hutschenreuter 《Comptes Rendus Chimie》2006,9(11-12):1419
The aim of the present work is to show that spectroscopic and ultrasonic methods are powerful in situ methods for monitoring polymerization processes and for the determination of the composition of polymer blends and additives during extrusion. Quantitative analysis carried out with chemometric methods can determine the composition of multicomponent polymer mixtures and predict real world samples in real-time during extrusion. Examples are the modification of hyperbranched poly(urea-urethane)s, the polymerization of MMA, the real-time determination of flame retardants in PA, and the determination of the composition of the blend PE/PS. To cite this article: D. Fischer et al., C. R. Chimie 9 (2006). 相似文献
108.
New supported acidic organocatalysts were prepared by the impregnation of three carboxylic acids (CF3COOH, CCl3COOH, and CH3COOH) on silica support at room temperature in diethyl ether. The catalysts were characterized by scanning electron microscopy, energy dispersion X-ray analysis (EDX), Brunauer-Emmett-Teller-surface-area-analysis (BET), thermogravitational analysis, Fourier transform infrared, and powder X-ray diffractometry analysis. These solid acids were observed as highly efficient reusable catalysts at room temperature for the selective synthesis of β-amino carbonyl compounds via Mannich-type reactions of acetophenone, arylamine and arylaldehydes using two different conditions in CH2Cl2 solution and solvent-free grinding within a short time. The more acidic two catalysts could be recycled for up to five cycles with a small loss in catalytic activity. 相似文献
109.
Susmita Podder 《Tetrahedron》2007,63(37):9146-9152
A high-valent heterobimetallic catalyst namely [Ir2(COD)2(SnCl3)2(Cl)2(μ-Cl)2] (5 mol %), or dual catalyst system of [Ir(COD)Cl]2 (1 mol %) and SnCl4 (4 mol %), promotes the benzylation or allylation of arenes and heteroarenes using ethers as the alkylating agents. An electrophilic mechanism is proposed from a Hammett correlation. 相似文献
110.
The highly active Friedel-Crafts alkylation (FCA) catalyst, [Ir(COD)Cl(SnCl3)(SnCl4)(arene)]+Cl- (1-SnCl4), is easily generated in one-pot from [Ir(COD)Cl]2 or [Ir(COD)(mu-Cl)Cl(SnCl3)]2 (1) and SnCl4. The reaction of arenes, heteroarenes with benzyl, and allyl alcohols is promoted by 1-SnCl4 (1 mol %) with high turnover frequency. Kinetic evidence is presented to establish FCA pattern. From dual-catalyst combination studies varying the transition metal and main group metal partner, the efficiency of the present catalysts is attributed to the electrophilic "IrIII-SnIV" core. 相似文献