首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20644篇
  免费   2866篇
  国内免费   2177篇
化学   15703篇
晶体学   303篇
力学   1077篇
综合类   187篇
数学   2000篇
物理学   6417篇
  2024年   40篇
  2023年   287篇
  2022年   575篇
  2021年   597篇
  2020年   673篇
  2019年   678篇
  2018年   532篇
  2017年   540篇
  2016年   916篇
  2015年   874篇
  2014年   1071篇
  2013年   1462篇
  2012年   1841篇
  2011年   1852篇
  2010年   1328篇
  2009年   1142篇
  2008年   1382篇
  2007年   1173篇
  2006年   1146篇
  2005年   1062篇
  2004年   866篇
  2003年   755篇
  2002年   829篇
  2001年   547篇
  2000年   478篇
  1999年   424篇
  1998年   310篇
  1997年   290篇
  1996年   291篇
  1995年   256篇
  1994年   208篇
  1993年   190篇
  1992年   174篇
  1991年   149篇
  1990年   133篇
  1989年   104篇
  1988年   93篇
  1987年   66篇
  1986年   63篇
  1985年   72篇
  1984年   38篇
  1983年   37篇
  1982年   30篇
  1981年   29篇
  1980年   16篇
  1979年   12篇
  1977年   8篇
  1976年   6篇
  1974年   8篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
A unique one‐dimensional (1D) sandwich single‐walled TiO2 nanotube (STNT) is proposed as a photoanode nanomaterial with perfect morphology and large specific surface area. We have thoroughly examined the elementary photoelectronic processes occurring at the porphyrin dye/STNT hetero‐interface in dye‐sensitized solar cells (DSSCs) by theoretical simulation. It is desirable to investigate the interfacial photoelectronic processes to elucidate the electron transfer and transport mechanism in 1D STNT‐based DSSCs. We have found that the photoexcitation and interfacial charge separation mechanism can be described as follows. A ground‐state electron of the dye molecule (localized around the electron donor) is first promoted to the excited state (distributed electron donor), and then undergoes ultrafast injection into the conduction band of the STNT, leaving a hole around the oxidized dye. Significantly, the injected electron in the conduction band is transported along the STNT by means of Ti 3d orbitals, offering a unidirectional electron pathway toward the electrode for massive collection without the observation of trap states. Our study not only provides theoretical guidelines for the modification of TiO2 nanotubes as a photoanode material, but also opens a new perspective for the development of a novel class of TiO2 nanotubes with high power‐generation efficiency.  相似文献   
952.
A new triazatruxene‐based fluorescent glycocluster has been designed, synthesized, and fully characterized by NMR spectroscopy and mass spectrometry. Furthermore, its specific and selective binding properties with concanavalin A (Con A) have been investigated by fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and turbidity assay. The obtained results showed that the multivalent mannose‐modified triazatruxene exhibited specific binding with Con A, but no binding to peanut agglutinin (PNA) lectin or bovine serum albumin (BSA), corresponding to a two‐orders‐of‐magnitude higher affinity than that of monovalent mannose ligands. Most interestingly, a fluorescence enhancement of the triazatruxene‐based glycocluster was observed upon binding with Con A because of hydrophobic interactions involving sites close to the triazatruxene moiety. Furthermore, the inhibitory ability of the triazatruxene‐based glycocluster against ORN178‐ induced haemagglutination has been investigated by haemagglutination inhibition assay. The results indicated selective binding with ORN178.  相似文献   
953.
A p‐quinodimethane (p‐QDM)‐bridged porphyrin dimer 1 has been prepared for the first time. An unexpected Michael addition reaction took place when we attempted to synthesize compound 1 by reaction of the cross‐conjugated keto‐linked porphyrin dimers 8 a and 8 b with alkynyl/aryl Grignard reagents. Alternatively, compound 1 could be successfully prepared by intramolecular Friedel–Crafts alkylation of the diol‐linked porphyrin dimer 14 with concomitant oxidation in air. Compound 1 shows intense one‐photon absorption (OPA, λmax=955 nm, ε=45400 M ?1 cm?1) and a large two‐photon absorption (TPA) cross‐section (σ(2)max=2080 GM at 1800 nm) in the near‐infrared (NIR) region due to its extended π‐conjugation and quinoidal character. It also exhibits a short singlet excited‐state lifetime of 25 ps. The cyclic voltammogram of 1 displays multiple redox waves with a small electrochemical energy gap of 0.86 eV. The ground‐state geometry, electronic structure, and optical properties of 1 have been further studied by density functional theory (DFT) calculations and compared with those of the keto‐linked dimer 8 b . This research has revealed that incorporation of a p‐QDM unit into the porphyrin framework had a significant impact on its optical and electronic properties, leading to a novel NIR OPA and TPA chromophore.  相似文献   
954.
There is an ongoing need for explosive detection strategies to uncover threats to human security including illegal transport and terrorist activities. The widespread military use of the explosive trinitrotoluene (TNT) for landmines poses another particular threat to human health in the form of contamination of the surrounding environment and groundwater. The detection of explosives, particularly at low picogram levels, by using a molecular sensor is seen as an important challenge. Herein, we report on the use of a fluorescent metal–organic framework hydrogel that exhibits a higher detection capability for TNT in the gel state compared with that in the solution state. A portable sensor prepared from filter paper coated by the hydrogel was able to detect TNT at the picogram level with a detection limit of 1.82 ppt (parts per trillon). Our results present a simple and new means to provide selective detection of TNT on a surface or in aqueous solution, as afforded by the unique molecular packing through the metal–organic framework structure in the gel formation and the associated photophysical properties. Furthermore, the rheological properties of the MOF‐based gel were similar to those of a typical hydrogel.  相似文献   
955.
A new catalyst consisting of ionic liquid (IL)‐functionalized carbon nanotubes (CNTs) obtained through 1,3‐dipolar cycloaddition support‐enhanced electrocatalytic Pd nanoparticles (Pd@IL(Cl?)‐CNTs) was successfully fabricated and applied in direct ethanol alkaline fuel cells. The morphology, structure, component and stability of Pd@IL(Cl?)‐CNTs were systematic characterized by transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), Raman spectra, thermogravimetric analysis (TGA) and X‐ray diffraction (XRD). The new catalyst exhibited higher electrocatalytic activity, better tolerance and electrochemical stability than the Pd nanoparticles (NPs) immobilized on CNTs (Pd@CNTs), which was ascribed to the effects of the IL, larger electrochemically active surface area (ECSA), and greater processing performance. Cyclic voltammograms (CVs) at various scan rates illustrated that the oxidation behaviors of ethanol at all electrodes were controlled by diffusion processes. The investigation of the different counteranions demonstrated that the performance of the IL‐CNTs hybrid material was profoundly influenced by the subtly varied structures of the IL moiety. All the results indicated that the Pd@IL(Cl?)‐CNTs catalyst is an efficient anode catalyst, which has potential applications in direct ethanol fuel cells and the strategy of IL functionalization of CNTs could be available to prepare other carbonaceous carrier supports to enhance the dispersivity, stability, and catalytic performance of metal NPs as well.  相似文献   
956.
Novel, porous NiCo2O4 nanotubes (NCO‐NTs) are prepared by a single‐spinneret electrospinning technique followed by calcination in air. The obtained NCO‐NTs display a one‐dimensional architecture with a porous structure and hollow interiors. The effect of precursor concentration on the morphologies of the products is investigated. Due to their unique structure, the prepared NCO‐NT electrode exhibits a high specific capacitance (1647 F g?1 at 1 A g?1), excellent rate capability (77.3 % capacity retention at 25 A g?1), and outstanding cycling stability (6.4 % loss after 3000 cycles), which indicates it has great potential for high‐performance electrochemical capacitors. The desirable enhanced capacitive performance of NCO‐NTs can be attributed to the relatively large specific surface area of these porous and hollow one‐dimensional nanostructures.  相似文献   
957.
We describe herein the synthesis of novel donor–acceptor conjugated polymers with dithienobenzodithiophenes (DTBDT) as the electron donor and 2,1,3‐benzothiadiazole as the electron acceptor for high‐performance organic photovoltaics (OPVs). We studied the effects of strategically inserting thiophene into the DTBDT as a substituent on the skeletal structure on the opto‐electronic performances of fabricated devices. From UV/Vis absorption, electrochemical, and field‐effect transistor analyses, we found that the thiophene‐containing DTBDT derivative can substantially increase the orbital overlap area between adjacent conjugated chains and thus dramatically enhance charge‐carrier mobility up to 0.55 cm2 V?1 s?1. The outstanding charge‐transport characteristics of this polymer allowed the realization of high‐performance organic solar cells with a power conversion efficiency (PCE) of 5.1 %. Detailed studies on the morphological factors that enable the maximum PCE of the polymer solar cells are discussed along with a hole/electron mobility analysis based on the space‐charge‐limited current model.  相似文献   
958.
This article describes a simple method for the generation of multicomponent gradient surfaces on self‐assembled monolayers (SAMs) on gold in a precise and predictable manner, by harnessing a chemical reaction on the monolayer, and their applications. A quinone derivative on a monolayer was converted to an amine through spontaneous intramolecular cyclization following first‐order reaction kinetics. An amine gradient on the surface on a scale of centimeters was realized by modulating the exposure time of the quinone‐presenting monolayer to the chemical reagent. The resulting amine was used as a chemical handle to attach various molecules to the monolayer with formation of multicomponent gradient surfaces. The effectiveness of this strategy was verified by cyclic voltammetry (CV), matrix assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry (MS), MS imaging, and contact‐angle measurements. As a practical application, cell adhesion was investigated on RGD/PHSRN peptide/peptide gradient surfaces. Peptide PHSRN was found to synergistically enhance cell adhesion at the position where these two ligands are presented in equal amounts, while these peptide ligands were competitively involved in cell adhesion at other positions. This strategy of generating a gradient may be further expandable to the development of functional gradient surfaces of various molecules and materials, such as DNA, proteins, growth factors, and nanoparticles, and could therefore be useful in many fields of research and practical applications.  相似文献   
959.
960.
Two porous metal–organic frameworks (MOFs), [Zn3(L)(H2O)2] ? 3 DMF ? 7 H2O ( MOF‐1 ) and [(CH3)2NH2]6[Ni3(L)2(H2O)6] ? 3 DMF ? 15 H2O ( MOF‐2 ), were synthesized solvothermally (H6L=1,2,3,4,5,6‐hexakis(3‐carboxyphenyloxymethylene)benzene). In MOF ‐ 1 , neighboring ZnII trimers are linked by the backbones of L ligands to form a fascinating 3D six‐connected framework with the point symbol (412.63) (412.63). In MOF‐2 , eight L ligands bridge six NiII atoms to generate a rhombic‐dodecahedral [Ni6L8] cage. Each cage is surrounded by eight adjacent ones through sharing of carboxylate groups to yield an unusual 3D porous framework. Encapsulation of LnIII cations for tunable luminescence and small drug molecules for efficient delivery were investigated in detail for MOF‐1 .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号