首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57486篇
  免费   9849篇
  国内免费   1517篇
化学   55086篇
晶体学   561篇
力学   1184篇
数学   4115篇
物理学   7906篇
  2023年   161篇
  2022年   457篇
  2021年   734篇
  2020年   1629篇
  2019年   2942篇
  2018年   1366篇
  2017年   989篇
  2016年   3929篇
  2015年   3990篇
  2014年   4102篇
  2013年   5310篇
  2012年   4565篇
  2011年   3993篇
  2010年   3954篇
  2009年   3770篇
  2008年   3872篇
  2007年   3063篇
  2006年   2822篇
  2005年   2786篇
  2004年   2445篇
  2003年   2158篇
  2002年   2738篇
  2001年   1840篇
  2000年   1686篇
  1999年   671篇
  1998年   251篇
  1997年   233篇
  1996年   291篇
  1995年   192篇
  1994年   208篇
  1993年   209篇
  1992年   158篇
  1991年   132篇
  1990年   131篇
  1989年   102篇
  1988年   74篇
  1987年   78篇
  1986年   52篇
  1985年   79篇
  1984年   54篇
  1983年   48篇
  1982年   71篇
  1981年   69篇
  1980年   41篇
  1979年   51篇
  1978年   49篇
  1977年   41篇
  1976年   46篇
  1975年   39篇
  1974年   40篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
A self-consistent integral equation theory is presented for the conformational properties and spinodal lines of random copolymer melts. The theory combines field-theoretic methods with the polymer reference interaction site model (PRISM) theory. The many-chain problem is replaced by a single chain where the sites interact via a bare plus a self-consistently determined medium-induced potential, and the conformational properties are obtained using a variational method. The theoretical prediction for the spinodal line is qualitatively similar to that of non-self-consistent PRISM theory. The theory predicts macroscopic phase separation for all values of the monomer correlation strength, lambda. The inverse spinodal temperature is a nonmonotonic function of lambda with a maximum at lambda(max). For large values of lambda( approximately 1), the values of spinodal temperatures are almost identical to those of non-self-consistent PRISM theory. For low values of lambda, however, the theory predicts higher values for spinodal temperatures than non-self-consistent PRISM theory. The theory predicts significant changes in the mean-square end-to-end distance as the temperature is decreased.  相似文献   
992.
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8+ T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8+ T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as TH2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8+ T and CD4+ TH1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment.Subject terms: Cancer immunotherapy, Cancer microenvironment, Tumour angiogenesis, Tumour immunology, Targeted therapies  相似文献   
993.
2‐(Aryloxymethyl)‐5‐benzyloxy‐1‐methyl‐1H‐pyridin‐4‐ones 8a – 8g , 2‐(aryloxymethyl)‐5‐hydroxy‐4H‐pyran‐4‐ones 9a – 9g , and 2‐(aryloxymethyl)‐5‐hydroxy‐1‐methyl‐1H‐pyridin‐4‐ones 10a – 10g were prepared from the known 5‐benzyloxy‐2‐(hydroxymethyl)pyran‐4‐one ( 3 ) in a good overall yield. These compounds were evaluated in vitro against a three‐cell lines panel consisting of MCF7 (breast), NCI‐H460 (lung), and SF‐268 (CNS), and the active compounds passed on for evaluation in the full panel of 60 human tumor cell lines derived from nine cancer cell types. The results indicated that 5‐hydroxy derivatives are more favorable than their corresponding 5‐benzyloxy precursors ( 10a – 10g vs. 8a – 8g ), and 1‐methyl‐1H‐pyridin‐4‐ones are more favorable than their corresponding pyran‐4(1H)‐ones ( 10a – 10g vs. 9a – 9g ). Among these three types of compounds, 2‐(aryloxymethyl)‐5‐hydroxy‐1‐methyl‐1H‐pyridin‐4‐ones 10a – 10g were the most cytotoxic; they inhibited the growth of almost all the cancer cells tested. On the contrary, compound 8a (a mean GI50=27.8 μM ), 8b (38.5), 8d (11.0), and 8e (30.5) are especially active against the growth of SK‐MEL‐5 (a melanoma cancer cell) with a GI50 of <0.01, 5.65, 0.55, and 0.03 μM , respectively (cf. Table 2).  相似文献   
994.
Effects of self-coiling of organic molecules on intramolecular exciplex formation of compound I,in which the carbazole chromophore and terephthalic acid methylester acceptor group are linked by one (CH2)10 chain,and the decrease of the fluorescence intensities of compounds Ⅱ,Ⅲ,and Ⅳ,in which the carbazole chromophore and 3,5-dinitrobenzoate are connected by one aliphatic chain of (CH2)10 (Ⅱ),(CH2)12(Ⅲ),or (CH2)4(Ⅳ),have been studied in the dioxane (DX)-H2O binary system.The results show that self-coiling of organic molecules in DX-H2O facilitates intramolecular exciplex formation of I and induces the decrease of fluorescence intensities of Ⅱ,bacause of the proximity effect brought about by selfcoiling of organic molecules under hydrophobic-lipophilic interaction(HLI) between the excited carbazole chromophore and the acceptor.Since the similar effects are observed even when the concentration of the probes are less than their CAgCs(critical aggregate concentrations )in the DX-H2O mixture with the same φ values,formation of the intermolecular exciplex has been excluded.The effects are found to be strongly depended on φ values,indication that they are mainly driven by HLI.The properties of the acceptors can also affect the intramolecular exciplex formation.With terephthalic acid methylester moiety as the acceptor,the carbazole chromophore exhibits the fluorescence spectra of the exciplex,while with 3,5-dinitrobenzoate moiety as the acceptor,only the fluorescence spectra of excited carbazolyl chromophore are observed.  相似文献   
995.
Photophysical properties of porphyrin tapes   总被引:1,自引:0,他引:1  
The novel fused Zn(II)porphyrin arrays (Tn, porphyrin tapes) in which the porphyrin macrocycles are triply linked at meso-meso, beta-beta, beta-beta positions have been investigated by steady-state and time-resolved spectroscopic measurements along with theoretical MO calculations. The absorption spectra of the porphyrin tapes show a systematic downshift to the IR region as the number of porphyrin pigments increases in the arrays. The fused porphyrin arrays exhibit a rapid formation of the lowest excited states (for T2, approximately 500 fs) via fast internal conversion processes upon photoexcitation at 400 nm (Soret bands), which is much faster than the internal conversion process of approximately 1.2 ps observed for a monomeric Zn(II)porphyrin. The relaxation dynamics of the lowest excited states of the porphyrin tapes were accelerated from approximately 4.5 ps for the T2 dimer to approximately 0.3 ps for the T6 hexamer as the number of porphyrin units increases, being explained well by the energy gap law. The overall photophysical properties of the porphyrin tapes were observed to be in a sharp contrast to those of the orthogonal porphyrin arrays. The PPP-SCI calculated charge-transfer probability indicates that the lowest excited state of the porphyrin tapes (Tn) resembles a Wannier-type exciton closely, whereas the lowest excited state of the directly linked porphyrin arrays can be considered as a Frenkel-type exciton. Conclusively, these unique photophysical properties of the porphyrin tapes have aroused much interest in the fundamental photophysics of large flat organic molecules as well as in the possible applications as electric wires, IR sensors, and nonlinear optical materials.  相似文献   
996.
New tetradentate Schiff-base polymers, in which phenylene units alternate with salicylideneiminato units, have been prepared by condensation of 2,5-(didodecyloxy)-1,4-bis(3-formyl-4-hydroxyphenyl)benzene (DFHB) with appropriate diamines in a mixed solution of CHCl3/toluene/acetic acid with 31-79% yields. DFHB as the key building block was prepared by the Suzuki reaction of 2,5-(didodecyloxy)benzene-1,4-diboronic acid with 5-bromosalicylaldehyde in a two-phase solution of tetrahydrofuran/water in the presence of NaHCO3/Pd(PPh3)4 in 45% yield. The molecular structures of the prepared compounds were identified by spectroscopy. Their absorption spectroscopic profiles have been analyzed.  相似文献   
997.
Two copper complexes [Cu(TTA)2(4,4′‐azpy)] (1) and [Cu‐(TTA)2(3,3′‐azpy)] (2) (HTTA = 1,1,1‐trifluoro‐3‐(2‐thenoyl)‐acetone, 4,4′‐azpy = 4,4′‐azobispyridine, 3,3′‐azpy = 3,3′‐azobispyridine) were synthesized and characterized. The crystal structures were determined by X‐ray diffraction analysis. The crystal 1 belongs to triclinic with space group P1 , a = 0.8515(2) nm, b = 0.9259(2) nm, c = 0.9468(2) nm, a = 66.126(9)°, β = 79.667(9)°, γ = 90.13(1)°, Z = 1, V = 0.6692(2) nm3, Dc = 3.425 g/cm3, γ = 2.113 mm?1, F(000) = 694, R1 = 0.0594, wR2 = 0.1499. The crystal 2 belongs to monoclinic with space group P21/c, a = 1.0661(2) nm, b = 1.4296(3) ran, c = 1.0041(3) nm, β = 114.50(3)°, V = 1.3926(5) nm3, Z = 2, Dc = 1.646 g/ cm3, μ = 1.015 mm?1, F(000) = 694, R1, = 0.0535, wR2 = 0.1113. In the crystals of complexes 1 and 2, the copper atoms have distorted octahedral symmetry. The two compounds possess very similar one‐dimensional linear chains linked through the rodlike 4,4′‐azpy ligands or 3,3′‐azpy ligands.  相似文献   
998.
In the title compounds, [N‐(phenyl{2‐[N‐(S)‐(2‐picolyl)­prolyl­amino]­phenyl}methyl­ene)‐(S)‐phenyl­alaninato]­nickel(II), [Ni(C33H30N4O3)], (I), [N‐(phenyl{2‐[N‐(S)‐(3‐picolyl)­prolyl­amino]­phenyl}methyl­ene)‐(S)‐phenyl­alaninato]­nickel(II) hemihydrate, [Ni(C33H30N4O3)]·0.5H2O, (II), and [N‐({2‐[N‐(S)‐ethyl­prolyl­amino]­phenyl}phenyl­methyl­ene)‐(S)‐phenyl­ala­nin­ato]­nickel(II), [Ni(C29H29N3O3)], (III), the NiII centres have approximate square‐planar coordination geometries from N3O donor sets. The picolyl N atoms in (I) and (II) are too remote from the metal centres to interact significantly, but the metal coordination geometries experience tetrahedral distortion and/or displacement of the metal centre from the N3O plane. These are linked to conformational differences between the ligands of the symmetry‐independent complexes (Z′ = 2), which in turn are related to molecular packing. In (III), where a less sterically demanding ethyl group replaces the picolyl substituents, there are none of the distortions or displacements seen in (I) and (II).  相似文献   
999.
An in situ reaction under hydro­thermal conditions leads to the formation of the title compound, diaqua­(pyridine‐2‐carboxyl­ato)­(pyridine‐2,6‐dicarboxyl­ato)indium(II) trihydrate, [In(C6H4NO2)(C7H3NO4)(H2O)2]·3H2O, in which the central InIII atom is seven‐coordinated by one pyridine‐2,6‐di­carboxyl­ate ligand, one pyridine‐2‐carboxyl­ate ligand and two water mol­ecules in a penta­gonal–bipyramidal coordination environment. An indium(III)–water chain based on an unusual water pentamer is observed.  相似文献   
1000.
The mechanisms for the reaction of CH3S with NO2 are investigated at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311++G(d,p) on both single and triple potential energy surfaces (PESs). The geometries, vibrational frequencies, and zero‐point energy (ZPE) correction of all stationary points involved in the title reaction are calculated at the B3LYP/6‐311++G(d,p) level. More accurate energies are obtained at the QCISD(T)/6‐311++G(d,p). The results show that 5 intermediates and 14 transition states are found. The reaction is more predominant on the single PES, while it is negligible on the triple PES. Without any barrier height for the whole process, the main channel of the reaction is to form CH3SONO and then dissociate to CH3SO+NO. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号