首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   8篇
化学   58篇
力学   1篇
数学   7篇
物理学   28篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   8篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   12篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有94条查询结果,搜索用时 0 毫秒
31.
In this study, we use molecular dynamics simulations to investigate and compare the interactions of DPPC bilayers with and without saccharides (glucose or trehalose) under dehydrated conditions. Results from the simulations indicate that unilamellar bilayers lose their structural integrity under dehydrated conditions in the absence of saccharides; however, in the presence of either glucose or trehalose, the bilayers maintain their stability. Hydrogen bond analysis shows that the saccharide molecules displace a significant amount of water surrounding the lipid headgroups. At the same time, the additional hydrogen bonds formed between water and saccharide molecules help to maintain a hydration layer on the lipid bilayer interface. On the basis of the hydrogen bond distributions, trehalose forms more hydrogen bonds with the lipids than glucose, and it is less likely to interact with neighboring saccharide molecules. These results suggest that the interaction between the saccharide and lipid molecules through hydrogen bonds is an essential component of the mechanism for the stabilization of lipid bilayers.  相似文献   
32.
Tumor Necrosis Factor-α (TNF-α) is a cytokine that is normally produced by immune cells when fighting an infection. But, when too much TNF-α is produced as in autoimmune diseases, this leads to unwanted and persistent inflammation. Anti-TNF-α monoclonal antibodies have revolutionized the therapy of these disorders by blocking TNF-α and preventing its binding to TNF-α receptors, thus suppressing the inflammation. Herein, we propose an alternative in the form of molecularly imprinted polymer nanogels (MIP-NGs). MIP-NGs are synthetic antibodies obtained by nanomoulding the 3-dimensional shape and chemical functionalities of a desired target in a synthetic polymer. Using an in-house developed in silico rational approach, epitope peptides of TNF-α were generated and ‘synthetic peptide antibodies’ were prepared. The resultant MIP-NGs bind the template peptide and recombinant TNF-α with high affinity and selectivity, and can block the binding of TNF-α to its receptor. Consequently they were applied to neutralize pro-inflammatory TNF-α in the supernatant of human THP-1 macrophages, leading to a downregulation of the secretion of pro-inflammatory cytokines. Our results suggest that MIP-NGs, which are thermally and biochemically more stable and easier to manufacture than antibodies, and cost-effective, are very promising as next generation TNF-α inhibitors for the treatment of inflammatory diseases.  相似文献   
33.
Molecularly imprinted polymers (MIPs) are synthetic antibody mimics capable of specific molecular recognition. Advantageously, they are more stable, easy to tailor for a given application and less expensive than antibodies. These plastic antibodies are raising increasing interest and one relatively unexplored domain in which they could outplay these advantages particularly well is cosmetics. Here, we present the use of a MIP as an active ingredient of a cosmetic product, for suppressing body odors. In a dermo‐cosmetic formulation, the MIP captures selectively the precursors of malodorous compounds, amidst a multitude of other molecules present in human sweat. These results pave the way to the fabrication of a novel generation of MIPs with improved selectivities in highly complex aqueous environments, and should be applicable to biotechnological and biomedical areas as well.  相似文献   
34.
Iron-sulfur proteins are very versatile biological entities for which many new functions are continuously being unravelled. This review focus on their role in the initiation of radical chemistry, with special emphasis on radical-SAM enzymes, since several members of the family catalyse key steps in the biosynthetic pathways of cofactors such as biotin, lipoate, thiamine, heme and the molybdenum cofactor. It will also include other examples to show the chemical logic which is emerging from the presently available data on this family of enzymes. The common step in all the (quite different) reactions described here is the monoelectronic reductive cleavage of SAM by a reduced [4Fe-4S](1+) cluster, producing methionine and a highly oxidising deoxyadenosyl radical, which can initiate chemically difficult reactions. This set of enzymes, which represent a means to perform oxidation under reductive conditions, are often present in anaerobic organisms. Some other, non-SAM-dependent, radical reactions obeying the same chemical logic are also covered.  相似文献   
35.
We describe the fabrication of polymer nanofibers with entrapped molecularly imprinted polymer (MIP) nanoparticles and study their possible use in a fluorescence-based biosensor application. The MIP was imprinted with the fluorescent amino acid derivative dansyl-L-phenylalanine. Poly(vinyl alcohol) was used as a support for MIP nanoparticles because it is water-soluble and can be spun into very thin fibers. The fibers were characterized by atomic force microscopy and optical microscopy, and fluorescence microscopy was used for the characterization of target binding to the MIP. The fibers show close to 100% recovery upon extraction and rebinding of the target molecule. The selectivity of the system has been demonstrated through competitive binding experiments with nonfluorescent analogues boc-L-phenylalanine and boc-D-phenylalanine.  相似文献   
36.
Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance.  相似文献   
37.
Silica nanoparticles (SiO2 NPs) are one of the most widely used engineered nanoparticles and can been found in a wide range of consumer products. Despite their massive global production scale, little is known about their potential effects in the context of unintended exposure or ingestion. Using TR146 cells as an in vitro model of the human oral buccal mucosa, the uptake, spatial intracellular distribution, reactive oxygen species (ROS) production, inflammatory response, and cytotoxic effects of commercial SiO2 NPs are examined. SiO2 NPs are shown to dock and cross the cellular membrane barrier in a dose–time‐dependent manner. Confocal sectioning reveals translocation of SiO2 NPs into the cell nucleus after 12 h of exposure. A concentration threshold of more than 500 × 10?6 m is observed, above which SiO2 NPs are shown to exert significant oxidative stress with concomitant upregulation of inflammatory genes IL6 and TNFA. Further analysis of the p53 pathway and a series of apoptotic and cell cycle biomarkers reveals intracellular accumulation of SiO2 NPs exert marginal nanotoxicity. Collectively, this study provides important information regarding the uptake, intracellular distribution, and potential adverse cellular effects of SiO2 NPs commonly found in consumer products in the human oral epithelium.  相似文献   
38.
The protective properties of trehalose on cholesterol-containing lipid dipalmitoylphosphatidylcholine (DPPC) bilayers are studied through molecular simulations. The ability of the disaccharide to interact with the phospholipid headgroups and stabilize the membrane persists even at high cholesterol concentrations and restricts some of the changes to the structure that would otherwise be imposed by cholesterol molecules. Predictions of bilayer properties such as area per lipid, tail ordering, and chain conformation support the notion that the disaccharide decreases the main melting transition in these multicomponent model membranes, which correspond more closely to common biological systems than pure bilayers. Molecular simulations indicate that the membrane dynamics are slowed considerably by the presence of trehalose, indicating that high sugar concentrations would serve to avert possible phase separations that could arise in mixed phospholipid systems. Various time correlation functions suggest that the character of the modifications in lipid dynamics induced by trehalose and cholesterol is different in the hydrophilic and hydrophobic regions of the membrane.  相似文献   
39.
The present work uses a micromechanical force apparatus to directly measure cyclopentane clathrate hydrate cohesive force and hydrate-steel adhesive force, as a function of contact time, contact force and temperature. We present a hydrate interparticle force model, which includes capillary and sintering contributions and is based on fundamental interparticle force theories. In this process, we estimate the cyclopentane hydrate tensile strength to be approximately 0.91 MPa. This hydrate interparticle force model also predicts the effect of temperature on hydrate particle cohesion force. Finally, we present the first direct measurements of hydrate cohesive force in the gas phase to be 9.1 ± 2.1 mN/m at approximately 3 °C (as opposed to 4.3 ± 0.4 mN/m in liquid cyclopentane).  相似文献   
40.
The binary object treated is a square. We first use a set of initial phases to determine the symmetry of the object. The result shows a well-shaped image, and preserves symmetry of the object. We then use another set of initial phases. The result has gross shape of a square with approximately correct dimensions. Sayre's equation is applied to refine the gross shape. After iterations, the result shows an image which is close to a square with sharp boundary and has approximately correct dimensions. The charge densities of the image are approximately evenly distributed, scattering about the value of 1, and has no negative charge density. The shape of the binary object is obtained. The initial phases or the gross shape can be used as starting phases or starting envelope in other iterative algorithms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号