首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   818篇
  免费   50篇
  国内免费   1篇
化学   567篇
晶体学   6篇
力学   23篇
数学   62篇
物理学   211篇
  2024年   2篇
  2023年   11篇
  2022年   31篇
  2021年   17篇
  2020年   22篇
  2019年   30篇
  2018年   20篇
  2017年   15篇
  2016年   39篇
  2015年   36篇
  2014年   42篇
  2013年   64篇
  2012年   71篇
  2011年   70篇
  2010年   30篇
  2009年   37篇
  2008年   36篇
  2007年   35篇
  2006年   27篇
  2005年   35篇
  2004年   31篇
  2003年   18篇
  2002年   22篇
  2001年   11篇
  2000年   12篇
  1999年   9篇
  1998年   9篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1982年   6篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1961年   2篇
排序方式: 共有869条查询结果,搜索用时 15 毫秒
861.
Andrographolide, the principal secondary metabolite of Andrographis paniculata, displays a wide spectrum of medicinal activities. The content of andrographolide varies significantly in the species collected from different geographical regions. Therefore, this study aims at investigating the role of different abiotic factors and selecting suitable sites for the cultivation of A. paniculata with high andrographolide content using a multilayer perceptron artificial neural network (MLP-ANN) approach. A total of 150 accessions of A. paniculata collected from different regions of Odisha and West Bengal in eastern India showed a variation in andrographolide content in the range of 0.28–5.45% on a dry weight basis. The MLP-ANN was trained using climatic factors and soil nutrients as the input layer and the andrographolide content as the output layer. The best topological ANN architecture, consisting of 14 input neurons, 12 hidden neurons, and 1 output neuron, could predict the andrographolide content with 90% accuracy. The developed ANN model showed good predictive performance with a correlation coefficient (R2) of 0.9716 and a root-mean-square error (RMSE) of 0.18. The global sensitivity analysis revealed nitrogen followed by phosphorus and potassium as the predominant input variables influencing the andrographolide content. The andrographolide content could be increased from 3.38% to 4.90% by optimizing these sensitive factors. The result showed that the ANN approach is reliable for the prediction of suitable sites for the optimum andrographolide yield in A. paniculata.  相似文献   
862.
Fluoromethyl groups possess specific steric and electronic properties and serve as a bioisostere of alcohol, thiol, nitro, and other functional groups, which are important in an assortment of molecular recognition processes. Herein we report a catalytic method for the asymmetric synthesis of a variety of enantioenriched products bearing fluoromethylated stereocenters with excellent yields and enantioselectivities. Various N,P-ligands were designed and applied in the hydrogenation of fluoromethylated olefins and vinyl fluorides.

Herein, a catalytic asymmetric hydrogenation to synthesize various products bearing fluoromethylated stereocenters has been developed.  相似文献   
863.
Magnolia champaca (L.) Baill. ex Pierre of family Magnoliaceae, is a perennial tree with aromatic, ethnobotanical, and medicinal uses. The M. champaca leaf is reported to have a myriad of therapeutic activities, however, there are limited reports available on the chemical composition of the leaf essential oil of M. champaca. The present study explored the variation in the yield and chemical composition of leaf essential oil isolated from 52 accessions of M. champaca. Through hydrodistillation, essential oil yield was obtained, varied in the range of 0.06 ± 0.003% and 0.31 ± 0.015% (v/w) on a fresh weight basis. GC-MS analysis identified a total of 65 phytoconstituents accounting for 90.23 to 98.90% of the total oil. Sesquiterpene hydrocarbons (52.83 to 65.63%) constituted the major fraction followed by sesquiterpene alcohols (14.71 to 22.45%). The essential oils were found to be rich in β-elemene (6.64 to 38.80%), γ-muurolene (4.63 to 22.50%), and β-caryophyllene (1.10 to 20.74%). Chemometrics analyses such as PCA, PLS-DA, sPLS-DA, and cluster analyses such as hierarchical clustering, i.e., dendrogram and partitional clustering, i.e., K-means classified the essential oils of M. champaca populations into three different chemotypes: chemotype I (β-elemene), chemotype II (γ-muurolene) and chemotype III (β-caryophyllene). The chemical polymorphism analyzed in the studied populations would facilitate the selection of chemotypes with specific compounds. The chemotypes identified in the M. champaca populations could be developed as promising bio-resources for conservation and pharmaceutical application and further improvement of the taxa.  相似文献   
864.
865.
An operationally simple process has been developed for the synthesis of unsymmetrical amines and α-amino carbonyl derivatives in the absence of a catalyst, ligand, oxidant, or any additives. Contrary to known reductive amination methods, this protocol is amenable to substrates containing other reducible groups. This process effectively results in consecutive cleavage and formation of C−N bonds. DFT studies and Hammett analysis provide useful insight into the mechanism. The role of noncovalent interactions as a stabilizing factor have been examined in the protocol. A wide range of alkyl-bromides have been coupled efficiently with a variety of dimethyl anilines to get unsymmetric tertiary amines with yields up to 90%. This methodology was further extended to the synthesis of α-amino carbonyl derivatives with yields up to 93%.  相似文献   
866.
867.
Based on hybrid density functional theory (DFT) calculations, we propose a new two-dimensional (2D) B-C-N material, graphitic- (g- ), with the promising prospect of metal-free photocatalysis. We find it to be a near ultraviolet (UV) absorbing direct band gap (3.69 eV) semiconductor with robust dynamical and mechanical stability. Estimating the band positions with respect to water oxidation and hydrogen reduction potential levels along with a detailed analysis of reaction mechanism of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), we observe that g- monolayer can be efficiently used for hydrogen fuel generation over entire pH range as well as for spontaneous water splitting at basic pH range. Upon biaxial strain application, band positions get realigned along with the free energy change that is involved in HER and OER. Consequently, operational range of pH for OER gets broadened and the proposed material exhibits the ability to perform spontaneous and simultaneous oxidation and reduction even in neutral pH. The combination of pH variation and applied strain can be used as a key to control the reducing and/or oxidizing abilities precisely for diverse photocatalytic reactions to attain environmental sustainability.  相似文献   
868.
Harnessing new materials for developing high-energy storage devices set off research in the field of organic supercapacitors. Various attractive properties like high energy density, lower device weight, excellent cycling stability, and impressive pseudocapacitive nature make organic supercapacitors suitable candidates for high-end storage device applications. This review highlights the overall progress and future of organic supercapacitors. Sustainable energy production and storage depend on low cost, large supercapacitor packs with high energy density. Organic supercapacitors with high pseudocapacitance, lightweight form factor, and higher device potential are alternatives to other energy storage devices. There are many recent ongoing research works that focus on organic electrolytes along with the material aspect of organic supercapacitors. This review summarizes the current research status and the chemistry behind the storage mechanism in organic supercapacitors to overcome the challenges and achieve superior performance for future opportunities.  相似文献   
869.
Endohedral metallofullerenes (EMFs) are excellent carriers of rare-earth element (REE) ions in biomedical applications because they preclude the release of toxic metal ions. However, existing approaches to synthesize water-soluble EMF derivatives yield mixtures that inhibit precise drug design. Here we report the synthesis of metallobuckytrio (MBT), a three-buckyball system, as a modular platform to develop structurally defined water-soluble EMF derivatives with ligands by choice. Demonstrated with PEG ligands, the resulting water-soluble MBTs show superb biocompatibility. The Gd MBTs exhibit superior T1 relaxivity than typical Gd complexes, potentially superseding current clinical MRI contrast agents in both safety and efficiency. The Lu MBTs generated reactive oxygen species upon light irradiation, showing promise as photosensitizers. With their modular nature to incorporate other ligands, we anticipate the MBT platform to open new paths towards bio-specific REE drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号