首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   858篇
  免费   64篇
  国内免费   4篇
化学   687篇
晶体学   5篇
力学   22篇
数学   48篇
物理学   164篇
  2024年   4篇
  2023年   31篇
  2022年   27篇
  2021年   31篇
  2020年   47篇
  2019年   41篇
  2018年   35篇
  2017年   25篇
  2016年   62篇
  2015年   41篇
  2014年   48篇
  2013年   68篇
  2012年   77篇
  2011年   77篇
  2010年   43篇
  2009年   27篇
  2008年   36篇
  2007年   39篇
  2006年   29篇
  2005年   15篇
  2004年   15篇
  2003年   19篇
  2002年   11篇
  2001年   13篇
  2000年   6篇
  1999年   7篇
  1998年   4篇
  1996年   1篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有926条查询结果,搜索用时 15 毫秒
41.
The tandem Crabbé homologation-radical rearrangement of terminal enediynes leads, in a one-pot procedure, to the enantioselective synthesis of six- and seven-membered ring α-aminoesters bearing a quaternary stereocenter based on the phenomenon of memory of chirality.  相似文献   
42.
43.
Mondal P  Roy K  Bayen SP  Chowdhury P 《Talanta》2011,83(5):6924-1486
Polypyrrole nanoparticles of desired structure have been synthesized through simple micelle technique. It is then grafted with functionalized silica gel to develop a novel organic-inorganic hybrid material. The role of dimethyl dichloro silane (coupling agent) in grafting is demonstrated. The nanoparticles are characterized by TEM, SEM and TGA. Grafting reactions are evaluated by spectral (FTIR) analysis and chemical test. The Cr(VI) binding behavior of the composite is studied in various pH of the medium. The selectivity in binding Cr(VI) is monitored. The metal ion adsorption capacity and surface area of the material are found to be 38 mg/g and 235 m2/g, respectively.  相似文献   
44.
3′O-silylated derivatives of 5′-O-DMT-2′deoxynucleoside (2) were synthesized in high yield by reaction of 5′-O-DMT-2′-deoxynucleosides (1) with tert-butyl dimethylsilylchloride using sodium hydride, benzyltriethylammonlum chloride [TEBA] and a catalytic amount of dibenzo-[18]-crown-6 [DB-18-C-6] or 15-crown-5 [15-C-51 under mild reaction conditions.  相似文献   
45.
2,3-Dihydroxynaphthalene forms a strong chelate with titanium over the pH range 4 to 9. At pH 4–5, titanium is extracted into ethyl acetate along with iron, leaving behind V, Nb, Mo, and a host of elements present in complex matrices of rock samples. In the extract, titanium is easily separated from iron after raising the pH of the medium and re-extracting. The method is free from any interference. The sensitivity of the method is 3.2×104 L·mol–1cm–1. The method has been applied to a number of diverse samples including rocks and minerals. The precision of the Ti method is excellent. This method has been compared with tiron, chromotropic acid, diantipyrilmethane (DAM) and other existing spectrophotometric methods used in the analysis of rocks, ores and minerals. The proposed method has definite advantages over most spectrophotometric methods in terms of sensitivity, selectivity, reproducibility and simplicity.  相似文献   
46.
The influence of a chiral surfactant and a polymer-supported chiral additive on reduction of ketones using sodium borohydride will be described. Initial preparations involved methylation of (S)-leucinol to give (2S)-N , N-dimethyl-2-amino-4-methyl-1-pentanol (1) (67%). The chiral surfactant (2) was synthesized by reacting (1) with bromohexadecane (71%). The functionalized styrene for the polymer-supported chiral additive (5) was synthesized by reacting (1) with 4-vinylbenzyl chloride. Polymerization was carried out with 10% of the functionalized monomer (4), 5% cross-linking agent divinylbenzene, and 85% styrene with AIBN as the initiator. The activity of the chiral surfactant and polymeric additive were examined by using them as additives in a standard reduction of 2-pentanone with sodium borohydride to yield (R)- and (S)-2-pentanol (3) (20%). The resulting alcohol was analyzed by polarimetry (ee 9.5%) and also esterified with (2S)-methylbutyric acid prior to characterization by NMR. 13C NMR indicated an enantiomeric excess of 5.2% when the chiral surfactant was used, and 7% when the polymeric additive was used.  相似文献   
47.
The green colored complexes of the type Re(V)O(L(SB))Cl(2), 1, have been synthesised by reacting NBu(4)[ReOCl(4)] with HL(SB) in dry ethanol. Here, L(SB)(-) are the deprotonated forms of N-(2-hydroxybenzyl)-2-picolylamine (HL(SB)(1)); N-(2-hydroxybenzyl)-N',N'-dimethylethylenediamine (HL(SB)(2)) and N-(2-hydroxybenzyl)-N',N'-diethylethylenediamine (HL(SB)(3)). Similarly, NBu(4)[ReOCl(4)] reacted with N,N-bis(2-hydroxybenzyl)-2-picolylamine (H(2)L(1)); N,N-bis(2-hydroxybenzyl)-N',N'-dimethylethylenediamine (H(2)L(2)); N,N-bis(2-hydroxybenzyl)-N',N'-diethylethylenediamine (H(2)L(3)); [N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)]-2-aminoethanol (H(2)L(4)); [N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)]-2-methyl-2-amino-1-propanol (H(2)L(5)); N,N-bis(1-hydroxyethyl)-2-picolylamine (H(2)L(6)), to give the monochloro complexes Re(V)O(L)Cl, 2. The X-ray structures of the complexes are reported. The molecular structures observed in the solid state are preserved in solution ((1)H NMR). In acetonitrile solution the Re(V)O(L)Cl, 2, display a one-electron couple, Re(VI)O(L)Cl(+)-Re(V)O(L)Cl, near 1.0 V vs SCE. The electrogenerated hexavalent complexes [Re(VI)O(L)Cl]ClO(4), 3, are paramagnetic and display sextet EPR spectra in solution at room temperature (A(av) approximately 417 (G), g approximately 1.914).  相似文献   
48.
The association reaction between silyl radical (SiH3) and H2O2 has been studied in detail using high-level composite ab initio CBS-QB3 and G4MP2 methods. The global hybrid meta-GGA M06 and M06-2X density functionals in conjunction with 6-311++G(d,p) basis set have also been applied. To understand the kinetics, variational transition-state theory calculation is performed on the first association step, and successive unimolecular reactions are subjected to Rice–Ramsperger–Kassel–Marcus calculations to predict the reaction rate constants and product branching ratios. The bimolecular rate constant for SiH3–H2O2 association in the temperature range 250–600 K, k(T) = 6.89 × 10?13 T ?0.163exp(?0.22/RT) cm3 molecule?1 s?1 agrees well with the current literature. The OH production channel, which was experimentally found to be a minor one, is confirmed by the rate constants and branching ratios. Also, the correlation between our theoretical work and experimental literature is established. The production of SiO via secondary reactions is calculated to be one of the major reaction channels from highly stabilized adducts. The H-loss pathway, i.e., SiH2(OH)2 + H, is the major decomposition channel followed by secondary dissociation leading to SiO.  相似文献   
49.
A tridentate Schiff base ligand [(CH3)2NCH2CH2N=C(CH3)C6H4OH)] (LH) has been synthesized from 2-hydroxyacetophenone and 2-dimethylaminoethylamine. This ligand forms the neutral complexes [Co(L)(N3){o-(CH3C=O)C6H4O}] (1) and [Co(L)(SCN){o-(CH3C=O)C6H4O}]·1/2H2O (2) in presence of equivalent amount of Co(II) acetate, and sodium azide for 1 and sodium thiocyanate for 2. The complexes have been characterized by spectroscopic and crystallographic methods. The coordination geometry around Co(III) in both the complexes is distorted octahedral with one tridentate ligand L, one bidentate 2-hydroxyacetophenone and one monodentate azide for 1 and thiocyanate for 2. The azide and thiocyanate ligands in the two complexes occupy different positions relative to the coordination sites of L.  相似文献   
50.
A poly(3,6-dibenzaldimino N-vinyl carbazole) Pd(II) complex has been synthesized and characterized by physicochemical and spectroscopic techniques. The complex was found to be highly active toward hydrogenation reactions of various organic substrates under atmospheric pressure at ambient temperature. A tentative reaction mechanism is proposed on the basis of kinetic studies and isolation of reactive intermediates. The catalyst shows good conversion rates, thermal stability and recyclability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号