首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   663篇
  免费   5篇
化学   598篇
晶体学   2篇
力学   2篇
数学   9篇
物理学   57篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   23篇
  2015年   27篇
  2014年   49篇
  2013年   33篇
  2012年   41篇
  2011年   71篇
  2010年   53篇
  2009年   52篇
  2008年   47篇
  2007年   53篇
  2006年   47篇
  2005年   51篇
  2004年   40篇
  2003年   38篇
  2002年   12篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
  1965年   1篇
排序方式: 共有668条查询结果,搜索用时 328 毫秒
81.
The most popular in vitro nucleic acid amplification techniques like polymerase chain reaction (PCR) including real-time PCR are costly and require thermocycling, rendering them unsuitable for uses at point-of-care. Highly efficient in vitro nucleic acid amplification techniques using simple, portable and low-cost instruments are crucial in disease diagnosis, mutation detection and biodefense. Toward this goal, isothermal amplification techniques that represent a group of attractive in vitro nucleic acid amplification techniques for bioanalysis have been developed. Unlike PCR where polymerases are easily deactivated by thermally labile constituents in a sample, some of the isothermal nucleic acid amplification techniques, such as helicase-dependent amplification and nucleic acid sequence-based amplification, enable the detection of bioanalytes with much simplified protocols and with minimal sample preparations since the entire amplification processes are performed isothermally. This review focuses on the isothermal nucleic acid amplification techniques and their applications in bioanalytical chemistry. Starting off from their amplification mechanisms and significant properties, the adoption of isothermal amplification techniques in bioanalytical chemistry and their future perspectives are discussed. Representative examples illustrating the performance and advantages of each isothermal amplification technique are discussed along with some discussion on the advantages and disadvantages of each technique.  相似文献   
82.
A general overview of the development of the uses of light-emitting diodes in analytical instrumentation is given. Fundamental aspects of light-emitting diodes, as far as relevant for this usage, are covered in the first part. The measurement of light intensity is also discussed, as this is an essential part of any device based on light-emitting diodes as well. In the second part, applications are discussed, which cover liquid and gas-phase absorbance measurements, flow-through detectors for chromatography and capillary electrophoresis, sensors, as well as some less often reported methods such as photoacoustic spectroscopy.  相似文献   
83.
Analysis of the odour complexity in food and beverage products demands high resolution approaches for distinguishing individual aroma-impact compound(s), and for assessing their contribution to the global aroma of a sample. This paper aims to review current applications incorporating different advanced separation methodologies, and their roles in achieving high resolution aroma analysis. This includes prior low resolution gas chromatography–olfactometry (GC–O) with fractionation procedures using chemical manipulation, adsorption chromatography and ion exchange separation. Innovative multidimensional gas chromatography (MDGC) arrangements that are appropriately designed with olfactometry are of specific focus here. The revelation of resolved components using these integrated approaches provides significantly improved knowledge of aroma composition in samples.  相似文献   
84.
Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted.  相似文献   
85.
The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed.  相似文献   
86.
This paper is a review of the recent progress on gas sensors using graphene oxide (GO). GO is not a new material but its unique features have recently been of interest for gas sensing applications, and not just as an intermediate for reduced graphene oxide (RGO). Graphene and RGO have been well known gas-sensing materials, but GO is also an attractive sensing material that has been well studied these last few years. The functional groups on GO nanosheets play important roles in adsorbing gas molecules, and the electric or optical properties of GO materials change with exposure to certain gases. Addition of metal nanoparticles and metal oxide nanocomposites is an effective way to make GO materials selective and sensitive to analyte gases. In this paper, several applications of GO based sensors are summarized for detection of water vapor, NO2, H2, NH3, H2S, and organic vapors. Also binding energies of gas molecules onto graphene and the oxygenous functional groups are summarized, and problems and possible solutions are discussed for the GO-based gas sensors.  相似文献   
87.
Motivated by potential benefits such as sensor miniaturization, multiplexing opportunities and higher sensitivities, refractometric nanoplasmonic biosensing has profiled itself in a short time span as an interesting alternative to conventional Surface Plasmon Resonance (SPR) biosensors. This latter conventional sensing concept has been subjected during the last decades to strong commercialization, thereby strongly leaning on well-developed thin-film surface chemistry protocols. Not surprisingly, the examples found in literature based on this sensing concept are generally characterized by extensive analytical studies of relevant clinical and diagnostic problems. In contrast, the more novel Localized Surface Plasmon Resonance (LSPR) alternative finds itself in a much earlier, and especially, more fundamental stage of development. Driven by new fabrication methodologies to create nanostructured substrates, published work typically focuses on the novelty of the presented material, its optical properties and its use – generally limited to a proof-of-concept – as a label-free biosensing scheme. Given the different stages of development both SPR and LSPR sensors find themselves in, it becomes apparent that providing a comparative analysis of both concepts is not a trivial task. Nevertheless, in this review we make an effort to provide an overview that illustrates the progress booked in both fields during the last five years. First, we discuss the most relevant advances in SPR biosensing, including interesting analytical applications, together with different strategies that assure improvements in performance, throughput and/or integration. Subsequently, the remaining part of this work focuses on the use of nanoplasmonic sensors for real label-free biosensing applications. First, we discuss the motivation that serves as a driving force behind this research topic, together with a brief summary that comprises the main fabrication methodologies used in this field. Next, the sensing performance of LSPR sensors is examined by analyzing different parameters that can be invoked in order to quantitatively assess their overall sensing performance. Two aspects are highlighted that turn out to be especially important when trying to maximize their sensing performance, being (1) the targeted functionalization of the electromagnetic hotspots of the nanostructures, and (2) overcoming inherent negative influence that stem from the presence of a high refractive index substrate that supports the nanostructures. Next, although few in numbers, an overview is given of the most exhaustive and diagnostically relevant LSPR sensing assays that have been recently reported in literature, followed by examples that exploit inherent LSPR characteristics in order to create highly integrated and high-throughput optical biosensors. Finally, we discuss a series of considerations that, in our opinion, should be addressed in order to bring the realization of a stand-alone LSPR biosensor with competitive levels of sensitivity, robustness and integration (when compared to a conventional SPR sensor) much closer to reality.  相似文献   
88.
In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid chromatography (HPLC).  相似文献   
89.
We are just beginning to exploit the fascinating potential of thionine, called electrochemical probe that can selectively recognize specific polycyclic aromatic hydrocarbons (PAHs), as tools for the detection of tricyclic aromatic hydrocarbons phenanthrene (PHE) and anthracene (ANT). A novel electrochemical sensing platform by modification of electroactive thionine functionalized graphene onto glass carbon electrode (Th/GRs/GCE) surface was constructed. The immobilized thionine showed a remarkable stability, which may benefit from the π–π stacking force with graphene. Under optimum conditions, the proposed electrochemical sensor exhibited high sensitivity and low detection limit for detecting PHE and ANT. The total amount of PHE and ANT could be quantified in a wide range of 10 pM–0.1 μM with a good linearity (R2 = 0.9979) and a low detection limit of 0.1 pM (S/N = 3). Compounds which possess one or two benzene rings or PAHs with more than three rings, such as benzene, naphthalene (NAP), benzo[a]pyrene (BaP) and pyrene (PYR) show little interference on the detection. Consequently, a simple and sensitive electrochemical method was proposed for the determination of PHE and ANT, which was used to determine PHE and ANT in waste water samples. The electrochemical method provides a general tool that complements the commonly used spectroscopic methods and immune method for the detection of PAHs.  相似文献   
90.
Mass spectrometry (MS) techniques are commonly used for protein identification and further analysis of selected protein spots after high resolution 2-D electrophoresis. Complementary gel-free approaches have been developed during the last few years and have shown to be useful tools in modern proteomics. The development and application of various gel-free electrophoresis devices for performing protein fractionation according to the pI differences is therefore a topic of interest. This review describes the current state of isoelectric focusing (IEF) gel-free electrophoresis based on the Agilent offgel 3100 fractionator. The review includes, therefore, (i) an overview on IEF as well as other previous IEF gel-free electrophoresis developments; (ii) offgel fundamentals and future trends; (iii) advantages and disadvantages of current offgel procedures; (iv) requirements of isolated protein pellets for further offgel fractionation; (v) offgel fraction requirements to perform the second dimensional analysis by advance electrophoresis and chromatographic techniques; and (vi) effect of the offgel operating conditions on the stability of metal–protein complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号