首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   663篇
  免费   5篇
化学   598篇
晶体学   2篇
力学   2篇
数学   9篇
物理学   57篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   23篇
  2015年   27篇
  2014年   49篇
  2013年   33篇
  2012年   41篇
  2011年   71篇
  2010年   53篇
  2009年   52篇
  2008年   47篇
  2007年   53篇
  2006年   47篇
  2005年   51篇
  2004年   40篇
  2003年   38篇
  2002年   12篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
  1965年   1篇
排序方式: 共有668条查询结果,搜索用时 15 毫秒
71.
72.
Polymer thin-film transistors (PTFTs) based on poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) semiconductor are fabricated by spin-coating process and characterized. In the experiments, solution preparation, deposition and device measurements are all performed in air for large-area applications. Hysteresis effect and gate-bias stress effect are observed for the devices at room temperature. The saturation current decreases and the threshold voltage shifts toward the negative direction upon gate-bias stress, but carrier mobility hardly changes. By using quasi-static C-V analysis for MOS capacitor structure, it can be deduced that the origin of threshold-voltage shift upon negative gate-bias stress is predominantly associated with hole trapping within the SiO2 gate dielectric near the SiO2/MEH-PPV interface due to hot-carrier emission.  相似文献   
73.
74.
75.
76.
77.
78.
79.
80.
Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号