首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   37篇
  国内免费   1篇
化学   416篇
晶体学   8篇
力学   5篇
数学   28篇
物理学   95篇
  2023年   7篇
  2022年   7篇
  2021年   10篇
  2020年   29篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   25篇
  2015年   25篇
  2014年   17篇
  2013年   25篇
  2012年   39篇
  2011年   41篇
  2010年   28篇
  2009年   20篇
  2008年   53篇
  2007年   42篇
  2006年   35篇
  2005年   36篇
  2004年   16篇
  2003年   11篇
  2002年   10篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   7篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1935年   1篇
  1934年   1篇
  1933年   5篇
排序方式: 共有552条查询结果,搜索用时 46 毫秒
41.
42.
Spin-dependent changes in the noise power of undoped amorphous hydrogenated silicon ( a-Si:H) are observed under electron spin resonance conditions. The noise-detected magnetic resonance (NDMR) signal has the g value of holes in the valence band tail of a-Si:H. Both the sign of the NDMR signal and the frequency dependence of its intensity can be quantitatively accounted for by a resonant reduction of the generation-recombination noise time constant tau. This identifies hopping in the valence-band tail as the dominant spin-dependent step governing noise in this material.  相似文献   
43.
A new method for preparation of titania nanowires with diameter around 10 nm and length up to 2–3 μm is described. The precursor was prepared from sodium titanate by adding ethylene glycole (EG) and heating at temperature of 198°C for 6 h under reflux. The sodium titanate glycolate formed by this way aggregated into 1D nanostructures and was subsequently transformed into titania glycolate during a chemical treatment with 98% sulfuric acid. Titania nanowires with variable amount of anatase and rutile were prepared by heating to temperatures in the range 350–1000°C. The precursor as well as titania based samples were characterized by X-ray diffraction, Infrared spectroscopy, Scanning electron microscopy, High resolution transmission microscopy, Thermogravimetry, Differential thermal analysis, Evolved gas analysis and Emanation thermal analysis. The nitrogen adsorption/desorption was used for surface area and porosity determination. The photoactivity of the prepared titania samples was assessed by the photocatalytic decomposition of 4-chlorophenol in an aqueous slurry under UV irradiation of 365 nm wavelength.  相似文献   
44.
A simple method for nano‐scale texturing of silicon surfaces based on local metal‐catalyzed wet chemical etching, which results in an almost complete suppression of reflectivity in a broad spectral range, has been successfully applied to produce black multi‐crystalline silicon solar cells. The performance of the cells is compared to that of reference cells without surface nano‐texturing. A considerable increase of the short circuit current (by 36–42% with respect to the reference cells) without deterioration of other performance parameters is observed under natural sun illumination. Means of further optimization of such black solar cells are discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
45.
This paper is intended to provide an introduction to the theory of substitution tilings. For our purposes, tiling substitution rules are divided into two broad classes: geometric and combinatorial. Geometric substitution tilings include self-similar tilings such as the well-known Penrose tilings; for this class there is a substantial body of research in the literature. Combinatorial substitutions are just beginning to be examined, and some of what we present here is new. We give numerous examples, mention selected major results, discuss connections between the two classes of substitutions, include current research perspectives and questions, and provide an extensive bibliography. Although the author attempts to represent the field as a whole, the paper is not an exhaustive survey, and she apologizes for any important omissions.  相似文献   
46.
47.
48.
We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond.  相似文献   
49.
We demonstrate the electrical detection of pulsed X-band electron nuclear double resonance (ENDOR) in phosphorus-doped silicon at 5 K. A pulse sequence analogous to Davies ENDOR in conventional electron spin resonance is used to measure the nuclear spin transition frequencies of the (31)P nuclear spins, where the (31)P electron spins are detected electrically via spin-dependent transitions through Si/SiO(2) interface states, thus not relying on a polarization of the electron spin system. In addition, the electrical detection of coherent nuclear spin oscillations is shown, demonstrating the feasibility to electrically read out the spin states of possible nuclear spin qubits.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号