首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9095篇
  免费   310篇
  国内免费   78篇
化学   6668篇
晶体学   42篇
力学   205篇
数学   1361篇
物理学   1207篇
  2023年   35篇
  2022年   67篇
  2021年   110篇
  2020年   145篇
  2019年   141篇
  2018年   101篇
  2017年   74篇
  2016年   220篇
  2015年   190篇
  2014年   223篇
  2013年   516篇
  2012年   540篇
  2011年   684篇
  2010年   309篇
  2009年   238篇
  2008年   520篇
  2007年   600篇
  2006年   627篇
  2005年   503篇
  2004年   459篇
  2003年   394篇
  2002年   361篇
  2001年   135篇
  2000年   88篇
  1999年   84篇
  1998年   81篇
  1997年   107篇
  1996年   114篇
  1995年   84篇
  1994年   77篇
  1993年   90篇
  1992年   73篇
  1991年   56篇
  1990年   83篇
  1989年   44篇
  1988年   61篇
  1987年   60篇
  1986年   73篇
  1985年   107篇
  1984年   106篇
  1983年   69篇
  1982年   97篇
  1981年   93篇
  1980年   94篇
  1979年   68篇
  1978年   84篇
  1977年   63篇
  1976年   58篇
  1975年   52篇
  1973年   59篇
排序方式: 共有9483条查询结果,搜索用时 0 毫秒
961.
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl(4), in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl(4). For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl(4). Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl(2) (+) fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl(4) (2+). The lowest energy dicationic precursor state, leading to SiCl(3) (+) + Cl(+) formation, lies 27.4 ± 0.3 eV above the ground state of SiCl(4) and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).  相似文献   
962.
Treatment of the complex [U(Tren(TMS))(Cl)(THF)] [1, Tren(TMS) = N(CH(2)CH(2)NSiMe(3))(3)] with Me(3)SiI at room temperature afforded known crystalline [U(Tren(TMS))(I)(THF)] (2), which is reported as a new polymorph. Sublimation of 2 at 160 °C and 10(-6) mmHg afforded the solvent-free dimer complex [{U(Tren(TMS))(μ-I)}(2)] (3), which crystallizes in two polymorphic forms. During routine preparations of 1, an additional complex identified as [U(Cl)(5)(THF)][Li(THF)(4)] (4) was isolated in very low yield due to the presence of a slight excess of [U(Cl)(4)(THF)(3)] in one batch. Reaction of 1 with one equivalent of lithium dicyclohexylamide or bis(trimethylsilyl)amide gave the corresponding amide complexes [U(Tren(TMS))(NR(2))] (5, R = cyclohexyl; 6, R = trimethylsilyl), which both afforded the cationic, separated ion pair complex [U(Tren(TMS))(THF)(2)][BPh(4)] (7) following treatment of the respective amides with Et(3)NH·BPh(4). The analogous reaction of 5 with Et(3)NH·BAr(f)(4) [Ar(f) = C(6)H(3)-3,5-(CF(3))(2)] afforded, following addition of 1 to give a crystallizable compound, the cationic, separated ion pair complex [{U(Tren(TMS))(THF)}(2)(μ-Cl)][BAr(f)(4)] (8). Reaction of 7 with K[Mn(CO)(5)] or 5 or 6 with [HMn(CO)(5)] in THF afforded [U(Tren(TMS))(THF)(μ-OC)Mn(CO)(4)] (9); when these reactions were repeated in the presence of 1,2-dimethoxyethane (DME), the separated ion pair [U(Tren(TMS))(DME)][Mn(CO)(5)] (10) was isolated instead. Reaction of 5 with [HMn(CO)(5)] in toluene afforded [{U(Tren(TMS))(μ-OC)(2)Mn(CO)(3)}(2)] (11). Similarly, reaction of the cyclometalated complex [U{N(CH(2)CH(2)NSiMe(2)Bu(t))(2)(CH(2)CH(2)NSiMeBu(t)CH(2))}] with [HMn(CO)(5)] gave [{U(Tren(DMSB))(μ-OC)(2)Mn(CO)(3)}(2)] [12, Tren(DMSB) = N(CH(2)CH(2)NSiMe(2)Bu(t))(3)]. Attempts to prepare the manganocene derivative [U(Tren(TMS))MnCp(2)] from 7 and K[MnCp(2)] were unsuccessful and resulted in formation of [{U(Tren(TMS))}(2)(μ-O)] (13) and [MnCp(2)]. Complexes 3-13 have been characterized by X-ray crystallography, (1)H NMR spectroscopy, FTIR spectroscopy, Evans method magnetic moment, and CHN microanalyses.  相似文献   
963.
New methodology for the preparation of a variety of aminoiminohextitols is described. Key in the synthesis is the application of a diastereoselective Strecker reaction and the extension of our carbamate annulation methodology to protected and functionalized alkenylamines. Insight into the effects that the substitution patterns of the alkenylamines have on the diastereoselectivity of the iodocyclization and carbamate annulation is discussed. An evaluation of the glycosidase inhibitory activity of the aminoiminohexitols and derivatives is also presented, with the previously undisclosed D-talo isomer showing good selective inhibition of β-D-glucosidase.  相似文献   
964.
The vibrational spectrum of an η(1),η(1)-1,2-peroxodiiron(III) complex was measured by nuclear resonance vibrational spectroscopy and fit using an empirical force field analysis. Isotopic (18)O(2) labelling studies revealed a feature involving motion of the {Fe(2)(O(2))}(4+) core that was not previously observed by resonance Raman spectroscopy.  相似文献   
965.
Three new [2]rotaxanes with aromatic nitrogen donors appended to the crown ether wheel have been synthesized and used as ligands to coordinate Cd(II) ions. One of these yields a new type of 2-periodic, metal organic rotaxane framework in which the wheel rather than the axle is used to link the metal nodes.  相似文献   
966.
Results of mass spectrometric studies are reported for the collisional dissociation of Group XI (Cu, Ag, Au) metal ion complexes with fatty acids (palmitic, oleic, linoleic and α-linolenic) and glycerolipids. Remarkably, the formation of M2H+ ions (M = Cu, Ag) is observed as a dissociation product of the ion complexes containing more than one metal cation and only if the lipid in the complex contains a double bond. Ag2H+ is formed as the main dissociation channel for all three of the fatty acids containing double bonds that were investigated while Cu2H+ is formed with one of the fatty acids and, although abundant, is not the dominant dissociation channel. Also, Cu(I) and Ag(I) ion complexes were observed with glycerolipids (including triacylglycerols and glycerophospholipids) containing either saturated or unsaturated fatty acid substituents. Interestingly, Ag2H+ ion is formed in a major fragmentation channel with the lipids that are able to form the complex with two metal cations (triacylglycerols and glycerophosphoglycerols), while lipids containing a fixed positive charge (glycerophospocholines) complex only with a single metal cation. The formation of Ag2H+ ion is a significant dissociation channel from the complex ion [Ag2(L–H)]+ where L = Glycerophospholipid (GP) (18:1/18:1). Cu(I) also forms complexes of two metal cations with glycerophospholipids but these do not produce Cu2H+ upon dissociation. Rather organic fragments, not containing Cu(I), are formed, perhaps due to different interactions of these metal cations with lipids resulting from the much smaller ionic radius of Cu(I) compared to Ag(I).  相似文献   
967.
968.
The determination of the mass transport kinetics of oxide materials for use in electrochemical systems such as fuel cells, sensors and oxygen separators is a significant challenge. Several techniques have been proposed to derive these data experimentally with only the oxygen isotope exchange depth profile technique coupled with secondary ion mass spectrometry (SIMS) providing a direct measure of these kinetic parameters. Whilst this allows kinetic information to be obtained, there is a lack of knowledge of the surface chemistry of these complex processes. The advent of low-energy ion scattering (LEIS) now offers the opportunity of correlating exchange kinetics with chemical processes at materials atomic surfaces, giving unprecedented levels of information on electrochemical systems with isotopic discrimination. Here, the challenges of these techniques, including sample preparation, are discussed and the advantages of the combined approach of SIMS and LEIS illustrated with reference to key literature data.  相似文献   
969.
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号