首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20632篇
  免费   617篇
  国内免费   153篇
化学   14800篇
晶体学   154篇
力学   445篇
数学   2883篇
物理学   3120篇
  2023年   95篇
  2022年   152篇
  2021年   220篇
  2020年   297篇
  2019年   280篇
  2018年   220篇
  2017年   181篇
  2016年   437篇
  2015年   409篇
  2014年   502篇
  2013年   1011篇
  2012年   1191篇
  2011年   1517篇
  2010年   726篇
  2009年   591篇
  2008年   1278篇
  2007年   1387篇
  2006年   1440篇
  2005年   1342篇
  2004年   1197篇
  2003年   987篇
  2002年   918篇
  2001年   288篇
  2000年   224篇
  1999年   208篇
  1998年   228篇
  1997年   274篇
  1996年   293篇
  1995年   190篇
  1994年   195篇
  1993年   205篇
  1992年   162篇
  1991年   139篇
  1990年   141篇
  1989年   103篇
  1988年   121篇
  1987年   125篇
  1986年   121篇
  1985年   203篇
  1984年   193篇
  1983年   131篇
  1982年   165篇
  1981年   176篇
  1980年   179篇
  1979年   132篇
  1978年   130篇
  1977年   107篇
  1976年   91篇
  1975年   89篇
  1973年   92篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Self‐replication is a fundamental concept. The idea of an entity that can repeatedly create more of itself has captured the imagination of many thinkers from von Neumann to Vonnegut. Beyond the sciences and science fiction, autocatalysis has found currency in economics and language theory, and has raised ethical fears memorably summed up by the “gray goo” trope. Autocatalysis is central to the propagation of life and intrinsic to many other biological processes. This includes the modern conception of evolution, which has radically altered humanity’s image of itself. Organisms can be thought of as imperfect self‐replicators which produce closely‐related species, allowing for selection and evolution. Hence, any consideration of self‐replication raises one of the most profound questions of all: what is life? Minimal self‐replicating systems have been studied with the aim of understanding the principles underlying living systems, allowing us to refine our concepts of biological fitness and chemical stability, self‐organization and emergence, and ultimately to discover how chemistry may become biology.  相似文献   
992.
993.
A bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery. The wireless aspect of BPEs also makes it possible to electrosynthesize and screen novel materials for a wide variety of applications. Finally, bipolar electrochemistry enables mobile electrodes, dubbed microswimmers, that are able to move freely in solution.  相似文献   
994.
We present a novel mechanism for the extraction of metals from aqueous phases to room-temperature ionic liquids (ILs) by use of a high-temperature salt as an extraction agent. The mechanism capitalizes on the fact that charged metal complexes are soluble in ILs; this allows for extraction of charged complexes rather than the neutral species, which are formed by conventional approaches. The use of a well-chosen extraction agent also suppresses the competing ion-exchange mechanism, thus preventing degradation of the ionic liquid. The approach permits the use of excess extractant to drive the recovery of metals in high yield. This work presents both a thermodynamic framework for understanding the approach and experimental verification of the process in a range of different ILs. The method has great potential value in the recovery of metals, water purification and nuclear materials processing.  相似文献   
995.
Previous experimental and theoretical work identified that the application of a static magnetic (B) field can improve the resolution of a quadrupole mass spectrometer (QMS) and this simple method of performance enhancement offers advantages for field deployment. Presented here are further data showing the effect of the transverse magnetic field upon the QMS performance. For the first time, the asymmetry in QMS operation with B x and B y is considered and explained in terms of operation in the fourth quadrant of the stability diagram. The results may be explained by considering the additional Lorentz force (v x B) experienced by the ion trajectories in each case. Using our numerical approach, we model not only the individual ion trajectories for a transverse B field applied in x and y but also the mass spectra and the effect of the magnetic field upon the stability diagram. Our theoretical findings, confirmed by experiment, show an improvement in resolution and ion transmission by application of magnetic field for certain operating conditions.
Figure
?  相似文献   
996.
The study of protein kinetics requires an accurate measurement of isotopic ratios of peptides. Although Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometers yield accurate mass measurements of analytes, the isotopologue ratios are consistently lower than predicted. Recently, we demonstrated that the magnitude of the spectral error in the FT-ICR mass spectrometer is proportional to the scan duration of ions. Here, we present a novel isotopic ratio extrapolation (IRE) method for obtaining accurate isotopic ratio measurements. Accuracy is achieved by performing scans with different duration and extrapolation of the data to the initial moment of the ion rotation; IRE minimizes the absolute isotopic ratio error to ≤1 %. We demonstrate the application of IRE in protein turnover studies using 2H2O-metabolic labeling. Overall, this technique allows accurate measurements of the isotopic ratios of proteolytic peptides, a critical step for enabling routine studies of proteome dynamics.   相似文献   
997.
998.
A substantial portion of the atmospheric particle budget is of biological origin (human and animal dander, plant and insect debris, etc.). These bioaerosols can be considered information-rich packets of biochemical data specific to the organism of origin. In this study, bioaerosol samples from various indoor environments were analyzed to create identifiable patterns attributable to a source level of occupation. Air samples were collected from environments representative of human high-traffic- and low-traffic indoor spaces along with direct human skin sampling. In all settings, total suspended particulate matter was collected and the total aerosol protein concentration ranged from 0.03 to 1.2 μg/m3. High performance liquid chromatography was chosen as a standard analysis technique for the examination of aqueous aerosol extracts to distinguish signatures of occupation compared to environmental background. The results of this study suggest that bioaerosol “fingerprinting” is possible with the two test environments being distinguishable at a 97 % confidence interval.
Figure
Generalized schematic of human debris-based occupation detection. The various human occupation-related aerosolized material are collected via the filtration assembly along with other non-related aerosolized material. The collected material was then analyzed for total protein concentration as well as coarsely separated to generated unique pattern profiles. These profiles are information-rich enough to identify human occupation in an indoor space  相似文献   
999.
The study of individual cells with infrared (IR) microspectroscopy often requires living cells to be cultured directly onto a suitable substrate. The surface effect of the specific substrates on the cell growth—viability and associated biochemistry—as well as on the IR analysis—spectral interference and optical artifacts—is all too often ignored. Using the IR beamline, MIRIAM (Diamond Light Source, UK), we show the importance of the substrate used for IR absorption spectroscopy by analyzing two different cell lines cultured on a range of seven optical substrates in both transmission and reflection modes. First, cell viability measurements are made to determine the preferable substrates for normal cell growth. Successively, synchrotron radiation IR microspectroscopy is performed on the two cell lines to determine any genuine biochemically induced changes or optical effect in the spectra due to the different substrates. Multivariate analysis of spectral data is applied on each cell line to visualize the spectral changes. The results confirm the advantage of transmission measurements over reflection due to the absence of a strong optical standing wave artifact which amplifies the absorbance spectrum in the high wavenumber regions with respect to low wavenumbers in the mid-IR range. The transmission spectra reveal interference from a more subtle but significant optical artifact related to the reflection losses of the different substrate materials. This means that, for comparative studies of cell biochemistry by IR microspectroscopy, it is crucial that all samples are measured on the same substrate type.
Figure
Cell separation by PCA due to the refractive index of the substrate used, revealing transmission artifact.  相似文献   
1000.
Human milk oligosaccharides (HMOs), though non-nutritive to the infant, shape the intestinal microbiota and protect against pathogens during early growth and development. Infant formulas with added galacto-oligosaccharides have been developed to mimic the beneficial effects of HMOs. Premature infants have an immature immune system and a leaky gut and are thus highly susceptible to opportunistic infections. A method employing nanoflow liquid chromatography time-of-flight mass spectrometry (MS) is presented to simultaneously identify and quantify HMOs in the feces and urine of infants, of which 75 HMOs have previously been fully structurally elucidated. Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance MS was employed for high-resolution and rapid compositional profiling. To demonstrate this novel method, samples from mother–infant dyads as well as samples from infants receiving infant formula fortified with dietary galacto-oligosaccharides or probiotic bifidobacteria were analyzed. Ingested oligosaccharides are demonstrated in high abundance in the infant feces and urine. While the method was developed to examine specimens from preterm infants, it is of general utility and can be used to monitor oligosaccharide consumption and utilization in term infants, children, and adults. This method may therefore provide diagnostic and therapeutic opportunities.
Figure
Quantification of human milk oligosacchairdes in the milk, feces, and urine of a mother-infant dyad by MALDI FT-ICR (spectra) and nano-LC MS (pie charts)  相似文献   
[首页] « 上一页 [95] [96] [97] [98] [99] 100 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号