首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9335篇
  免费   321篇
  国内免费   76篇
化学   6835篇
晶体学   44篇
力学   211篇
数学   1375篇
物理学   1267篇
  2022年   52篇
  2021年   113篇
  2020年   148篇
  2019年   146篇
  2018年   103篇
  2017年   74篇
  2016年   227篇
  2015年   192篇
  2014年   226篇
  2013年   528篇
  2012年   553篇
  2011年   695篇
  2010年   316篇
  2009年   246篇
  2008年   534篇
  2007年   615篇
  2006年   632篇
  2005年   514篇
  2004年   467篇
  2003年   401篇
  2002年   379篇
  2001年   138篇
  2000年   98篇
  1999年   87篇
  1998年   81篇
  1997年   109篇
  1996年   122篇
  1995年   84篇
  1994年   79篇
  1993年   96篇
  1992年   77篇
  1991年   59篇
  1990年   85篇
  1989年   45篇
  1988年   65篇
  1987年   63篇
  1986年   76篇
  1985年   112篇
  1984年   109篇
  1983年   75篇
  1982年   97篇
  1981年   95篇
  1980年   97篇
  1979年   73篇
  1978年   86篇
  1977年   65篇
  1976年   58篇
  1975年   56篇
  1974年   36篇
  1973年   60篇
排序方式: 共有9732条查询结果,搜索用时 46 毫秒
911.
This paper describes the design, fabrication, and characterization of a bulk-micromachined piezoelectric microphone for aeroacoustic applications. Microphone design was accomplished through a combination of piezoelectric composite plate theory and lumped element modeling. The device consists of a 1.80-mm-diam, 3-microm-thick, silicon diaphragm with a 267-nm-thick ring of piezoelectric material placed near the boundary of the diaphragm to maximize sensitivity. The microphone was fabricated by combining a sol-gel lead zirconate-titanate deposition process on a silicon-on-insulator wafer with deep-reactive ion etching for the diaphragm release. Experimental characterization indicates a sensitivity of 1.66 microVPa, dynamic range greater than six orders of magnitude (35.7-169 dB, re 20 microPa), a capacitance of 10.8 nF, and a resonant frequency of 59.0 kHz.  相似文献   
912.
Teraoka I  Arnold S 《Optics letters》2007,32(9):1147-1149
Whispering gallery modes in a microsphere coated with three layers of high, low, and high refractive indices (RIs) are considered. Coastal modes and inland modes, centered on the outer and inner high-RI layers, exist as different radial modes. At right values of RI and thickness of the three layers, an inland mode and a coastal mode couple to produce a radial distribution of the photonic field that resembles bonding and antibonding orbitals. The coupling occurs across a layer of the middle low-RI layer, much thicker than the wavelength of light. The coupling is analyzed in a quantum-mechanical analog of a one-dimensional particle in a double-well potential.  相似文献   
913.
914.
This paper considers the structure of weakly nonlinear steady-state convection patterns in shallow rectangular planform containers heated from below. The lateral dimensions of the container are assumed to be much larger than the characteristic wavelength of convection, and the lateral boundaries are subject to forcing equivalent, for example, to imperfect thermal insulation in the Rayleigh–Benard problem. This has the effect of generating rolls parallel and perpendicular to the lateral boundaries. The resulting patterns are modelled by a coupled pair of nonlinear amplitude equations derived from a phenomenological model of convection introduced by Swift and Hohenberg [Phys. Rev. A15 (1977) 319]. These equations are applicable in the weakly nonlinear limit to a variety of pattern-forming systems such as the Rayleigh–Benard system. Solutions are found using both numerical and asymptotic methods. The boundary imperfection is shown to give rise to some novel effects, including the possibility of patterns containing square cells. More generally, patterns evolve that are dominated by rolls but with transitions to more complex bimodal forms near the edges of the container. The emergence and structure of transition lines, or grain boundaries, is analysed in detail.  相似文献   
915.
The rheological behavior and morphology of carbon nanofiber/polystyrene (CNF/PS) composites in their melt phase have been characterized both through experimental measurements and modeling. Composites prepared in the two different processes of solvent casting and melt blending are contrasted; melt-blended and solvent-cast composites were each prepared with CNF loadings of 2, 5, and 10 wt%. A morphological study revealed that the melt blending process results in composites with shorter CNFs than in the solvent-cast composites, due to damage caused by the higher stresses the CNFs encounter in melt blending, and that both processes retain the diameter of the as-received CNFs. The addition of carbon nanofiber to the polystyrene through either melt blending or solvent casting increases the linear viscoelastic moduli, G′ and G″, and steady-state viscosity, η, in the melt phase monotonically with CNF concentration, more so in solvent cast composites with their longer CNFs. The melt phase of solvent-cast composites with higher CNF concentrations exhibit a plateau of the elastic modulus, G′, at low frequencies, an apparent yield stress, and large first normal stress difference, N 1, at low strain rates, which can be attributed to contact-based network nanostructure formed by the long CNFs. A nanostructurally-based model for CNF/PS composites in their melt phase is presented which considers the composite system as rigid rods in a viscoelastic fluid matrix. Except for two coupling parameters, all material constants in the model for the composite systems are deduced from morphological and shear flow measurements of its separate nanofiber and polymer melt constituents of the composite. These two coupling parameters are polymer–fiber interaction parameter, σ, and interfiber interaction parameter, C I. Through comparison with our experimental measurements of the composite systems, we deduce that σ is effectively 1 (corresponding to no polymer–fiber interaction) for all CNF/PS nanocomposites studied. The dependence of CNF orientation on strain rate which we observe in our experiments is captured in the model by considering the interfiber interaction parameter, C I, as a function of strain rate. Applied to shear flows, the model predicts the melt-phase, steady-state viscosities, and normal stress differences of the CNF/PS composites as functions of shear rate, polymer matrix properties, fiber length, and mass concentration consistent with our experimental measurements.  相似文献   
916.
The Forchheimer equation: A theoretical development   总被引:2,自引:0,他引:2  
In this paper we illustrate how the method of volume averaging can be used to derive Darcy's law with the Forchheimer correction for homogeneous porous media. Beginning with the Navier-Stokes equations, we find the volume averaged momentum equation to be given by $$\langle v_\beta \rangle = - \frac{K}{{\mu _\beta }} \cdot (\nabla \langle p_\beta \rangle ^\beta - \rho _\beta g) - F\cdot \langle v_\beta \rangle .$$ The Darcy's law permeability tensor, K, and the Forchheimer correction tensor, F, are determined by closure problems that must be solved using a spatially periodic model of a porous medium. When the Reynolds number is small compared to one, the closure problem can be used to prove that F is a linear function of the velocity, and order of magnitude analysis suggests that this linear dependence may persist for a wide range of Reynolds numbers.  相似文献   
917.
The Soviet Union has an overwhelming need for oversnow and adverse terrain transport since by their own definition over 60% of their country is considered as Arctic. They have developed a wide range of configurations and types of vehicles to fit their production capabilities and needs. Their vehicles in general are not sophisticated but rather emphasize ease of maintenance and simplicity. Their research however is based on investigating even exotic vehicle configurations.

Japan on the other hand has limited its work to a small number of vehicles to fit their limited needs in the Northern Islands. Their research has been based mainly on the development and improvement of a snow/road track which can be used to meet their specialized military requirements.  相似文献   

918.
In statistical linearization non-linear elements are approximated by equivalent linear elements according to recipes proposed by the pioneers of the procedure. The recipes require the evaluation of certain statistics which, ideally, should be evaluated using the exact probability distribution of the non-linear response. Because the exact non-linear response distribution is unknown it has become traditional to use a Gaussian distribution as an approximation to the exact distribution. With the modern computing tools now available it is easy to use non-Gaussian distributions which can provide better approximations in cases where Gaussian distributions are not appropriate. Examples are displayed for power-law oscillators with stiffening and softening springs, and for the Duffing oscillator, and for a double-well oscillator. Two families of probability distributions with varying shape are studied.  相似文献   
919.
Two-phase flow in stratified porous media is a problem of central importance in the study of oil recovery processes. In general, these flows are parallel to the stratifications, and it is this type of flow that we have investigated experimentally and theoretically in this study. The experiments were performed with a two-layer model of a stratified porous medium. The individual strata were composed of Aerolith-10, an artificial: sintered porous medium, and Berea sandstone, a natural porous medium reputed to be relatively homogeneous. Waterflooding experiments were performed in which the saturation field was measured by gamma-ray absorption. Data were obtained at 150 points distributed evenly over a flow domain of 0.1 × 0.6 m. The slabs of Aerolith-10 and Berea sandstone were of equal thickness, i.e. 5 centimeters thick. An intensive experimental study was carried out in order to accurately characterize the individual strata; however, this effort was hampered by both local heterogeneities and large-scale heterogeneities.The theoretical analysis of the waterflooding experiments was based on the method of large-scale averaging and the large-scale closure problem. The latter provides a precise method of discussing the crossflow phenomena, and it illustrates exactly how the crossflow influences the theoretical prediction of the large-scale permeability tensor. The theoretical analysis was restricted to the quasi-static theory of Quintard and Whitaker (1988), however, the dynamic effects described in Part I (Quintard and Whitaker 1990a) are discussed in terms of their influence on the crossflow.Roman Letters A interfacial area between the -region and the -region contained within V, m2 - a vector that maps onto , m - b vector that maps onto , m - b vector that maps onto , m - B second order tensor that maps onto , m2 - C second order tensor that maps onto , m2 - E energy of the gamma emitter, keV - f fractional flow of the -phase - g gravitational vector, m/s2 - h characteristic length of the large-scale averaging volume, m - H height of the stratified porous medium , m - i unit base vector in the x-direction - K local volume-averaged single-phase permeability, m2 - K - {K}, large-scale spatial deviation permeability - { K} large-scale volume-averaged single-phase permeability, m2 - K * large-scale single-phase permeability, m2 - K ** equivalent large-scale single-phase permeability, m2 - K local volume-averaged -phase permeability in the -region, m2 - K local volume-averaged -phase permeability in the -region, m2 - K - {K } , large-scale spatial deviation for the -phase permeability, m2 - K * large-scale permeability for the -phase, m2 - l thickness of the porous medium, m - l characteristic length for the -region, m - l characteristic length for the -region, m - L length of the experimental porous medium, m - characteristic length for large-scale averaged quantities, m - n outward unit normal vector for the -region - n outward unit normal vector for the -region - n unit normal vector pointing from the -region toward the -region (n = - n ) - N number of photons - p pressure in the -phase, N/m2 - p 0 reference pressure in the -phase, N/m2 - local volume-averaged intrinsic phase average pressure in the -phase, N/m2 - large-scale volume-averaged pressure of the -phase, N/m2 - large-scale intrinsic phase average pressure in the capillary region of the -phase, N/m2 - - , large-scale spatial deviation for the -phase pressure, N/m2 - pc , capillary pressure, N/m2 - p c capillary pressure in the -region, N/m2 - p capillary pressure in the -region, N/m2 - {p c } c large-scale capillary pressure, N/m2 - q -phase velocity at the entrance of the porous medium, m/s - q -phase velocity at the entrance of the porous medium, m/s - Swi irreducible water saturation - S /, local volume-averaged saturation for the -phase - S i initial saturation for the -phase - S r residual saturation for the -phase - S * { }*/}*, large-scale average saturation for the -phase - S saturation for the -phase in the -region - S saturation for the -phase in the -region - t time, s - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the -phase, m/s - {v } large-scale averaged velocity for the -phase, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - V large-scale averaging volume, m3 - y position vector relative to the centroid of the large-scale averaging volume, m - {y}c large-scale average of y over the capillary region, m Greek Letters local porosity - local porosity in the -region - local porosity in the -region - local volume fraction for the -phase - local volume fraction for the -phase in the -region - local volume fraction for the -phase in the -region - {}* { }*+{ }*, large-scale spatial average volume fraction - { }* large-scale spatial average volume fraction for the -phase - mass density of the -phase, kg/m3 - mass density of the -phase, kg/m3 - viscosity of the -phase, N s/m2 - viscosity of the -phase, Ns/m2 - V /V , volume fraction of the -region ( + =1) - V /V , volume fraction of the -region ( + =1) - attenuation coefficient to gamma-rays, m-1 - -   相似文献   
920.
Switchable surface redox chemistry is demonstrated in gold@iron/iron oxide core–shell nanoparticles with ambient oxidation and plasmon‐mediated reduction to modulate the oxidation state of shell layers. The iron shell can be oxidized to iron oxide through ambient oxidation, leading to an enhancement and red‐shift of the gold surface plasmon resonance (SPR). This enhanced gold SPR can drive reduction of the iron oxide shell under broadband illumination to reversibly blue‐shift and significantly dampen gold SPR absorption. The observed phenomena provide a unique mechanism for controlling the plasmonic properties and surface chemistry of small metal nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号