首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1040篇
  免费   55篇
  国内免费   3篇
化学   911篇
晶体学   7篇
力学   6篇
数学   74篇
物理学   100篇
  2024年   1篇
  2023年   12篇
  2022年   20篇
  2021年   31篇
  2020年   25篇
  2019年   29篇
  2018年   16篇
  2017年   14篇
  2016年   45篇
  2015年   29篇
  2014年   38篇
  2013年   51篇
  2012年   98篇
  2011年   106篇
  2010年   49篇
  2009年   39篇
  2008年   77篇
  2007年   77篇
  2006年   74篇
  2005年   56篇
  2004年   58篇
  2003年   39篇
  2002年   34篇
  2001年   9篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   8篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
  1938年   2篇
  1924年   1篇
  1922年   2篇
  1912年   1篇
排序方式: 共有1098条查询结果,搜索用时 0 毫秒
21.
R67 dihydrofolate reductase (DHFR) is a novel enzyme that confers resistance to the antibiotic trimethoprim. The crystal structure of R67 DHFR displays a toroidal structure with a central active-site pore. This homotetrameric protein exhibits 222 symmetry, with only a few residues from each chain contributing to the active site, so related sites must be used to bind both substrate (dihydrofolate) and cofactor (NADPH) in the productive R67 DHFR?NADPH?dihydrofolate complex. Whereas the site of folate binding has been partially resolved crystallographically, an interesting question remains: how can the highly symmetrical active site also bind and orient NADPH for catalysis? To model this ternary complex, we employed DOCK and SLIDE, two methods for docking flexible ligands into proteins using quite different algorithms. The bound pteridine ring of folate (Fol I) from the crystal structure of R67 DHFR was used as the basis for docking the nicotinamide-ribose-Pi (NMN) moiety of NADPH. NMN was positioned by both DOCK and SLIDE on the opposite side of the pore from Fol I, where it interacts with Fol I at the pore's center. Numerous residues serve dual roles in binding. For example, Gln 67 from both the B and D subunits has several contacts with the pteridine ring, while the same residue from the A and C subunits has several contacts with the nicotinamide ring. The residues involved in dual roles are generally amphipathic, allowing them to make both hydrophobic and hydrophilic contacts with the ligands. The result is a `hot spot' binding surface allowing the same residues to co-optimize the binding of two ligands, and orient them for catalysis.  相似文献   
22.
Molecular dynamics simulations were used to characterize the binding of the chiral drugs chlorthalidone and lorazepam to the molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The project’s goal was to characterize the nature of chiral recognition in capillary electrophoresis separations that use molecular micelles as the chiral selector. The shapes and charge distributions of the chiral molecules investigated, their orientations within the molecular micelle chiral binding pockets, and the formation of stereoselective intermolecular hydrogen bonds with the molecular micelle were all found to play key roles in determining where and how lorazepam and chlorthalidone enantiomers interacted with the molecular micelle.  相似文献   
23.
A benzoin‐derived diol linker was synthesized and used to generate biocompatible polyesters that can be fully decomposed on demand upon UV irradiation. Extensive structural optimization of the linker unit was performed to enable the defined encapsulation of diverse organic compounds in the polymeric structures and allow for a well‐controllable polymer cleavage process. Selective tracking of the release kinetics of encapsulated model compounds from the polymeric nano‐ and microparticle containers was performed by confocal laser scanning microscopy in a proof‐of‐principle study. The physicochemical properties of the incorporated and released model compounds ranged from fully hydrophilic to fully hydrophobic. The demonstrated biocompatibility of the utilized polyesters and degradation products enables their use in advanced applications, for example, for the smart packaging of UV‐sensitive pharmaceuticals, nutritional components, or even in the area of spatially selective self‐healing processes.  相似文献   
24.
The use of N‐methylpyrrolidone (NMP) as a co‐solvent in ferric salt catalyzed cross‐coupling reactions is crucial for achieving the highly selective, preparative scale formation of cross‐coupled product in reactions utilizing alkyl Grignard reagents. Despite the critical importance of NMP, the molecular level effect of NMP on in situ formed and reactive iron species that enables effective catalysis remains undefined. Herein, we report the isolation and characterization of a novel trimethyliron(II) ferrate species, [Mg(NMP)6][FeMe3]2 ( 1 ), which forms as the major iron species in situ in reactions of Fe(acac)3 and MeMgBr under catalytically relevant conditions where NMP is employed as a co‐solvent. Importantly, combined GC analysis and 57Fe Mössbauer spectroscopic studies identified 1 as a highly reactive iron species for the selective formation generating cross‐coupled product. These studies demonstrate that NMP does not directly interact with iron as a ligand in catalysis but, alternatively, interacts with the magnesium cations to preferentially stabilize the formation of 1 over [Fe8Me12]? cluster generation, which occurs in the absence of NMP.  相似文献   
25.
26.
The single‐crystal X‐ray structure analysis of hexakis(2,4,6‐triisopropylphenyl)cyclotristannoxane, cyclo‐[(2,4,6‐i‐Pr3‐C6H2)2SnO]3 ( 1 ), is reported and reveals this compound to contain an almost planar six‐membered ring. Redistribution reactions of 1 with cyclo‐(t‐Bu2SnO)3 and t‐Bu2SiCl2, respectively, failed and indicate an unusual kinetic inertness of the Sn–O bonds in 1 as compared to related molecular diorganotin oxides containing less bulkier substituents. The redistribution reaction of cyclo‐(t‐Bu2SnO)3 with cyclo‐(t‐Bu2SnS)2 leads to an equilibrium involving the trimeric diorganotin oxysulphides cyclot‐Bu2Sn(OSnt‐Bu2)2S ( 2 a ) and cyclot‐Bu2Sn(SSnt‐Bu2)2O ( 2 b ).  相似文献   
27.
Solid-state (13)C-NMR spectroscopy was used to characterize native cellulose pellicles from two strains of Gluconacetobacter xylinus (ATCC 53582, ATCC 23769), which had been statically cultivated in Hestrin-Schramm (HS) medium containing fully (13)C-labeled beta-D-glucose-U-(13)C(6) as the sole source of carbon. For both samples, the (13)C-NMR chemical shifts were completely assigned for each (13)C-labeled site of cellulose I(alpha) with the aid of 2D refocused INADEQUATE NMR. To determine the principal chemical shift tensor components, a pulse sequence based on the recoupling of anisotropy information (RAI) was applied at 10 kHz MAS. The detailed (13)C tensors of cellulose I(alpha) from different bacterial celluloses are thus available now for the first time, and these results have been compared with previously published data of nonenriched material and with theoretical predictions.  相似文献   
28.
The gas-phase reactivity of the CHCl*- anion has been investigated with a series of halomethanes (CCl4, CHCl3, CH2Cl2, and CH3Cl) using a FA-SIFT instrument. Results show that this anion primarily reacts via substitution and by proton transfer. In addition, the reactions of CHCl*- with CHCl3 and CH2Cl2 form minor amounts of Cl2*- and Cl-. The isotopic distribution of these two products is consistent with an insertion-elimination mechanism, where the anion inserts into a C-Cl bond to form an unstable intermediate, which eliminates either Cl2*- or Cl- and Cl*. Neutral and cationic carbenes are known to insert into single bonds; however, this is the first observation of such reactivity for carbene anions.  相似文献   
29.
The di-Zn(II) complex of 1,3-bis[ N1, N1'-(1,5,9-triazacyclododecyl)]propane with an associated methoxide ( 3:Zn(II) 2: (-)OCH 3) was prepared and its catalysis of the methanolysis of a series of fourteen methyl aryl phosphate diesters ( 6) was studied at s (s)pH 9.8 in methanol at 25.0 +/- 0.1 degrees C. Plots of k obs vs [ 3:Zn(II) 2: (-)OCH 3] free for all members of 6 show saturation behavior from which K(M) and kcat (max) were determined. The second order rate constants for the catalyzed reactions (kcat (max)/K(M)) for each substrate are larger than the corresponding methoxide catalyzed reaction (k 2 (-OMe)) by 1.4 x 10(8) to 3 x 10 (9)-fold. The values of k cat (max) for all members of 6 are between 4 x 10(11) and 3 x 10(13) times larger than the solution reaction at s (s)pH 9.8, with the largest accelerations being given for substrates where the departing aryloxy unit contains ortho-NO 2 or C(O)OCH 3 groups. Based on the linear Br?nsted plots of k cat (max) vs s (s)pKa of the phenol, beta lg values of -0.57 and -0.34 are determined respectively for the catalyzed methanolysis of "regular" substrates that do not contain the ortho-NO 2 or C(O)OCH 3 groups, and those substrates that do. The data are consistent with a two step mechanism for the catalyzed reaction with rate limiting formation of a catalyst-coordinated phosphorane intermediate, followed by fast loss of the aryloxy leaving group. A detailed energetics calculation indicates that the catalyst binds the transition state comprising [CH 3O (-): 6], giving a hypothetical [ 3:Zn(II) 2:CH 3O (-): 6] complex, by -21.4 to -24.5 kcal/mol, with the strongest binding being for those substrates having the ortho-NO 2 or C(O)OCH 3 groups.  相似文献   
30.
Both the nucellar projection (NP) and endosperm transfer cells (ETC) of the developing barley grain (harvested 8 days after flowering) were isolated by laser capture micro-dissection combined with pressure catapulting. Protein extracts were analyzed by nanoUPLC separation combined with ESI-Q-TOF mass spectrometry. The majority of the ~160 proteins identified were involved in translation, protein synthesis, or protein destination. The NP proteome was enriched for stress defense molecules, while proteins involved in assimilate transport and the mobilization of nutrients were common to both the NP and the ETC. The combined qualitative and quantitative protein profiling allowed for the identification of several proteins showing tissue specificity in their expression, which underlines the distinct biological functions of these two tissues within the developing barley grain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号