首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3155篇
  免费   176篇
  国内免费   17篇
化学   2168篇
晶体学   18篇
力学   79篇
数学   532篇
物理学   551篇
  2023年   33篇
  2022年   28篇
  2021年   55篇
  2020年   73篇
  2019年   90篇
  2018年   43篇
  2017年   45篇
  2016年   128篇
  2015年   130篇
  2014年   142篇
  2013年   184篇
  2012年   238篇
  2011年   264篇
  2010年   135篇
  2009年   124篇
  2008年   209篇
  2007年   156篇
  2006年   149篇
  2005年   131篇
  2004年   128篇
  2003年   91篇
  2002年   83篇
  2001年   57篇
  2000年   51篇
  1999年   40篇
  1998年   31篇
  1997年   37篇
  1996年   47篇
  1995年   47篇
  1994年   37篇
  1993年   35篇
  1992年   28篇
  1991年   19篇
  1990年   16篇
  1989年   14篇
  1988年   13篇
  1987年   19篇
  1986年   15篇
  1985年   23篇
  1984年   12篇
  1983年   11篇
  1982年   14篇
  1981年   8篇
  1980年   8篇
  1978年   11篇
  1977年   8篇
  1976年   8篇
  1975年   7篇
  1973年   10篇
  1971年   7篇
排序方式: 共有3348条查询结果,搜索用时 15 毫秒
71.
The ring-opening and ring-closure reactions of a photochromic indolylfulgimide are investigated with femtosecond vibrational spectroscopy. Spectral signatures due to excited-state decay and vibrational cooling are seen in the mid-IR region. For the ring-opening reaction triggered with visible pulses, a lifetime of the excited electronic state of 4 ps was obtained in polar solution. In a nonpolar solvent, this time constant is reduced to 2 ps. The ring-closure reaction induced with UV pulses displays an excited-state lifetime and thus a building of the photoproduct of roughly 0.5 ps. For all processes, the subsequent cooling occurs on a 15-ps time scale lasting up to approximately 50 ps. The time-resolved IR measurements do not support the existence of any long-living intermediate states.  相似文献   
72.
A polymer dispersion consisting of soft latex spheres with a diameter of 135 nm was used to produce a crystalline film with face-centered cubic (fcc) packing of the spheres. Different from conventional small-molecule and hard-sphere colloidal crystals, the crystalline latex film in the present case is soft (i.e., easily deformable). The structural evolution of this soft colloidal latex film under stretching was investigated by in-situ synchrotron ultra-small-angle X-ray scattering. The film exhibits polycrystalline scattering behavior corresponding to fcc structure. Stretching results not only in a large deformation of the crystallographic structure but also in considerable nonaffine deformation at high draw ratios. The unexpected nonaffine deformation was attributed to slippage between rows of particles and crystalline grain boundaries. The crystalline structure remains intact even at high deformation, suggesting that directional anisotropic colloidal crystallites can be easily produced.  相似文献   
73.
We report here a systematic synthesis and characterization of aligned alpha-Fe2O3 (hematite), epsilon-Fe2O3, and Fe3O4 (magnetite) nanorods, nanobelts, and nanowires on alumina substrates using a pulsed laser deposition (PLD) method. The presence of spherical gold catalyst particles at the tips of the nanostructures indicates selective growth via the vapor-liquid-solid (VLS) mechanism. Through a series of experiments, we have produced a primitive "phase diagram" for growing these structures based on several designed pressure and temperature parameters. Transmission electron microscopy (TEM) analysis has shown that the rods, wires, and belts are single-crystalline and grow along <111>m or <110>h directions. X-ray diffraction (XRD) measurements confirm phase and structural analysis. Superconducting quantum interference device (SQUID) measurements show that the iron oxide structures exhibit interesting magnetic behavior, particularly at room temperature. This work is the first known report of magnetite 1D nanostructure growth via the vapor-liquid-solid (VLS) mechanism without using a template, as well as the first known synthesis of long epsilon-Fe2O3 nanobelts and nanowires.  相似文献   
74.
75.
Multidimensional high-performance liquid chromatography (HPLC) is a key method in shotgun proteomics approaches for analyzing highly complex protein mixtures by complementary chromatographic separation principles. Here, we describe an integrated 3D-nano-HPLC/nano-electrospray ionization quadrupole time-of-flight mass spectrometry system that allows an enzymatic digestion of proteins followed by an enrichment and subsequent separation of the created peptide mixtures. The online 3D-nano-HPLC system is composed of a monolithic trypsin reactor in the first dimension, a monolithic affinity column with immobilized monomeric avidin in the second dimension, and a reversed phase C18 HPLC-Chip in the third dimension that is coupled to a nano-ESI-Q-TOF mass spectrometer. The 3D-LC/MS setup is exemplified for the identification of biotinylated proteins from a simple protein mixture. Additionally, we describe an online 2D-nano-HPLC/nano-ESI-LTQ-Orbitrap-MS/MS setup for the enrichment, separation, and identification of cross-linked, biotinylated species from chemical cross-linking of cytochrome c and a calmodulin/peptide complex using a novel trifunctional cross-linker with two amine-reactive groups and a biotin label.
Figure
Schematic representations of the online 3D-nano-HPLC/nano-ESI-Q-TOF-MS/MS setup; LP loading pump, NP nano-pump  相似文献   
76.
The analogy of the reactivity of group 1 phosphides to that of FLPs is further demonstrated by reactions with CO, affording a new synthetic route to acyl‐phosphide anions. The reaction of [K(18‐crown‐6)][PtBu2] ( 1 ) with CO affords [(18‐crown‐6)K?THF2][ZtBuP=C(tBu)O] ( 2?THF2 ) as the major product, and the minor product [K6(18‐crown‐6)][(tBu2PCO)2]3 ( 3 ). Species 2 reacts with either BPh3 or additional CO to give [K(18‐crown‐6)][(Ph3B)tBuPC(tBu)O] ( 4 ) and [K(18‐crown‐6)][(OCtBu)2P] ( 5 ), respectively. The acyl‐phosphide anion 2 is thought to be formed by a photochemically induced radical process involving a transient species with triplet carbene character, prompting 1,2‐tert‐butyl group migration. A similar process is proposed for the subsequent reaction of 2 with CO to give 5 .  相似文献   
77.
Catechol and amine residues, both abundantly present in mussel adhesion proteins, are known to act cooperatively by displacing hydration barriers before binding to mineral surfaces. In spite of synthetic efforts toward mussel-inspired adhesives, the effect of positioning of the involved functional groups along a polymer chain is not well understood. By using sequence-defined oligomers grafted to soft hydrogel particles as adhesion probes, we study the effect of catechol–amine spacing, as well as positioning relative to the oligomer terminus. We demonstrate that the catechol–amine spacing has a significant effect on adhesion, while shifting their position has a small effect. Notably, combinations of non-charged amides and catechols can achieve similar cooperative effects on adhesion when compared to amine and catechol residues. Thus, these findings provide a blueprint for the design of next generation mussel-inspired adhesives.

The catechol driven adhesion of precision macromolecules on glass surfaces is quantified by soft colloidal probe readout. Catechol moieties are shown to synergize with amine and amide residues depending on residue spacing and residue order.  相似文献   
78.
A systematic study on the reactivity of the triple-decker complex [(Cp’’’Co)2(μ,η44-C7H8)] ( A ) (Cp’’’=1,2,4-tritertbutyl-cyclopentadienyl) towards sandwich complexes containing cyclo-P3, cyclo-P4, and cyclo-P5 ligands under mild conditions is presented. The heterobimetallic triple-decker sandwich complexes [(Cp*Fe)(Cp’’’Co)(μ,η54-P5)] ( 1 ) and [(Cp’’’Co)(Cp’’’Ni)(μ,η33-P3)] ( 3 ) (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) were synthesized and fully characterized. In solution, these complexes exhibit a unique fluxional behavior, which was investigated by variable temperature NMR spectroscopy. The dynamic processes can be blocked by coordination to {W(CO)5} fragments, leading to the complexes [(Cp*Fe)(Cp’’’Co)(μ3541-P5){W(CO)5}] ( 2 a ), [(Cp*Fe)(Cp’’’Co)(μ45411-P5){(W(CO)5)2}] ( 2 b ), and [(Cp’’’Co)(Cp’’’Ni)(μ3321-P3){W(CO)5}] ( 4 ), respectively. The thermolysis of 3 leads to the tetrahedrane complex [(Cp’’’Ni)2(μ,η22-P2)] ( 5 ). All compounds were fully characterized using single-crystal X-ray structure analysis, NMR spectroscopy, mass spectrometry, and elemental analysis.  相似文献   
79.
The homogeneous dinuclear zinc catalyst going back to the work of Williams et al. is to date the most active catalyst for the copolymerisation of cyclohexene oxide and CO2 at one atmosphere of carbon dioxide. However, this catalyst shows no copolymer formation in the copolymerisation reaction of propylene oxide and carbon dioxide, instead only cyclic carbonate is found. This behaviour is known for many zinc‐based catalysts, although the reasons are still unidentified. Within our studies, we focus on the parameters that are responsible for this typical behaviour. A deactivation of the catalyst due to a reaction with propylene oxide turns out to be negligible. Furthermore, the catalyst still shows poly(cyclohexene carbonate) formation in the presence of cyclic propylene carbonate, but the catalyst activity is dramatically reduced. In terpolymerisation reactions of CO2 with different ratios of cyclohexene oxide to propylene oxide, no incorporation of propylene oxide can be detected, which can only be explained by a very fast back‐biting reaction. Kinetic investigations indicate a complex reaction network, which can be manifested by theoretical investigations. DFT calculations show that the ring strains of both epoxides are comparable and the kinetic barriers for the chain propagation even favour the poly(propylene carbonate) over the poly(cyclohexene carbonate) formation. Therefore, the crucial step in the copolymerisation of propylene oxide and carbon dioxide is the back‐biting reaction in the case of the studied zinc catalyst. The depolymerisation is several orders of magnitude faster for poly(propylene carbonate) than for poly(cyclohexene carbonate).  相似文献   
80.
A method of analysis of silver nanoparticles (AgNPs) in chicken meat was developed. The homogenized chicken meat sample, which was spiked with AgNPs, was subjected to enzymolysis by Proteinase K for 40 min at 37 °C. Transmission electron microscopy and inductively coupled plasma mass spectrometry (ICP-MS) in single particle mode were used to characterize the number-based size distribution of AgNPs in the meat digestate. Because similar size distributions were found in the meat digestate and in the aqueous suspension of AgNPs used for spiking the meat, it was shown that no detectable dissolution of the AgNPs took place during the sample preparation stage. The digestate was injected into the asymmetric flow field flow fractionation (AF4) -ICP-MS system, which enabled fractionation of nanoparticles from the remaining meat matrix, and resulted in one large peak in the fractograms as well as two smaller peaks eluting close to the void volume. The recovery of silver contained in the large AgNP peak was around 80 %. Size determination of AgNPs in the meat matrix, based on external size calibration of the AF4 channel, was hampered by non-ideal (early elution) behavior of the AgNPs. Single particle ICP-MS was applied for determination of the number-based particle size distribution of AgNPs in collected fractions. The presented work describes for the first time the coupling of AF4 and ICP-MS for AgNP separation in a food matrix.  相似文献   
[首页] « 上一页 [3] [4] [5] [6] [7] 8 [9] [10] [11] [12] [13] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号