首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1671篇
  免费   60篇
  国内免费   14篇
化学   1080篇
晶体学   4篇
力学   51篇
数学   305篇
物理学   305篇
  2023年   10篇
  2022年   17篇
  2021年   29篇
  2020年   43篇
  2019年   37篇
  2018年   21篇
  2017年   28篇
  2016年   71篇
  2015年   51篇
  2014年   54篇
  2013年   93篇
  2012年   109篇
  2011年   132篇
  2010年   93篇
  2009年   66篇
  2008年   87篇
  2007年   81篇
  2006年   57篇
  2005年   73篇
  2004年   64篇
  2003年   56篇
  2002年   58篇
  2001年   38篇
  2000年   25篇
  1999年   23篇
  1998年   27篇
  1997年   17篇
  1996年   23篇
  1995年   20篇
  1994年   17篇
  1993年   10篇
  1992年   10篇
  1991年   8篇
  1990年   7篇
  1989年   8篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   9篇
  1984年   10篇
  1983年   7篇
  1982年   10篇
  1981年   10篇
  1980年   10篇
  1978年   12篇
  1976年   9篇
  1975年   9篇
  1974年   9篇
  1973年   8篇
  1972年   12篇
排序方式: 共有1745条查询结果,搜索用时 10 毫秒
71.
72.
73.
FT Raman investigation of sodium cellulose sulfates (NaCS) was reported. Different NaCS were prepared by two diverse sulfation methods and their total degrees of substitution (DS) of sulfate groups were determined through either 13C-NMR spectroscopy or elemental analysis. Subsequently, these NaCS were characterized with FT Raman spectroscopy. The caused bands through the introduction of the sulfate groups in cellulose chain were explained and assigned. Additionally, a strong linear correlation between the areas under the bands ascribed to the stretching vibrations of C–O–S groups and the total DS of NaCS was presented. A rapid method of quantifying the total DS of NaCS was established. Finally, sodium sulfate (Na2SO4), a salt that is very often produced during the sulfation of cellulose, was found to be analyzable even with a weight content of 0.12% in NaCS. The method of quantifying the content of this salt in NaCS was investigated with Raman spectroscopy.  相似文献   
74.
{Ag2(12‐C≡C‐closo‐1‐CB11H11)}n and selected pyridine ligands have been used for the synthesis of photostable AgI clusters that, with one exception, exhibit for AgI compounds unusual room‐temperature phosphorescence. Extraordinarily intense phosphorescence was observed for a distorted pentagonal bipyramidal AgI7 cluster that shows an unprecedented quantum yield of Φ=0.76 for AgI clusters. The luminescence properties correlate with the structures of the central AgIn motifs as shown by comparison of the emission properties of the clusters with different numbers of AgI ions, different charges, and electronically different pyridine ligands.  相似文献   
75.
The fall colors are signs of chlorophyll breakdown, the biological process in plants that generates phyllobilins. Most of the abundant natural phyllobilins are colorless, but yellow phyllobilins (phylloxanthobilins) also occur in fall leaves. As shown here, phylloxanthobilins are unique four‐stage photoswitches. Which switching mode is turned on is controlled by the molecular environment. In polar media, phylloxanthobilins are monomeric and undergo photoreversible Z/E isomerization, similar to that observed for bilirubin. Unlike bilirubin, however, the phylloxanthobilin Z isomers photodimerize in apolar solvents by regio‐ and stereospecific thermoreversible [2+2] cycloadditions from self‐assembled hydrogen‐bonded dimers. X‐ray analysis revealed the first stereostructure of a phylloxanthobilin and its hydrogen‐bonded self‐templating architecture, helping to rationalize its exceptional photoswitch features. The chemical behavior of phylloxanthobilins will play a seminal role in identifying biological roles of phyllobilins.  相似文献   
76.
Supramolecular polymers are a class of macromolecules stabilized by weak non‐covalent interactions. These self‐assembled aggregates typically undergo stimuli‐induced reversible assembly and disassembly. They thus hold great promise as so‐called functional materials. In this work, we present the design, synthesis, and responsive behavior of a short supramolecular oligomeric system based on two hetero‐complementary subunits. These “monomers” consist of a tetrathiafulvalene‐functionalized calix[4]pyrrole (TTF‐C[4]P) and a glycol diester‐linked bis‐2,5,7‐trinitrodicyanomethylenefluorene‐4‐carboxylate (TNDCF), respectively. We show that when mixed in organic solvents, such as CHCl3, CH2ClCH2Cl, and methylcyclohexane, supramolecular aggregation takes place to produce short oligomers stabilized by hydrogen bonding and donor–acceptor charge‐transfer (CT) interactions. The self‐associated materials were characterized by 1H NMR and UV/Vis/NIR absorption spectroscopy, as well as by concentration‐ and temperature‐dependent absorption spectroscopy and dynamic light scattering (DLS) analyses of both the monomeric and oligomerized species. The self‐associated system produced from TTF‐C[4]P and TNDCF exhibits a concentration‐dependent aggregation behavior typical of supramolecular polymers. Further support for the proposed self‐assembly came from theoretical calculations. The fluorescence emitting properties of TNDCF are quenched under conditions that promote the formation of supramolecular aggregates containing TTF‐C[4]P and TNDCF. This quenching effect has been utilized as a probe for the detection of substrates in the form of anions (i.e., chloride) and nitroaromatic explosives (i.e., 1,3,5‐trinitrobenzene). Specifically, the addition of these substrates to mixtures of TTF‐C[4]P and TNDCF produced a fluorescence “turn‐on” response.  相似文献   
77.
Several studies suggested that the cytotoxic effects of quantum dots (QDs) may be mediated by cadmium ions (Cd2+) released from the QDs cores. The objective of this work was to assess the intracellular Cd2+ concentration in human breast cancer MCF-7 cells treated with cadmium telluride (CdTe) and core/shell cadmium selenide/zinc sulfide (CdSe/ZnS) nanoparticles capped with mercaptopropionic acid (MPA), cysteamine (Cys), or N-acetylcysteine (NAC) conjugated to cysteamine. The Cd2+ concentration determined by a Cd2+-specific cellular assay was below the assay detection limit (<5 nM) in cells treated with CdSe/ZnS QDs, while in cells incubated with CdTe QDs, it ranged from approximately 30 to 150 nM, depending on the capping molecule. A cell viability assay revealed that CdSe/ZnS QDs were nontoxic, whereas the CdTe QDs were cytotoxic. However, for the various CdTe QD samples, there was no dose-dependent correlation between cell viability and intracellular [Cd2+], implying that their cytotoxicity cannot be attributed solely to the toxic effect of free Cd2+. Confocal laser scanning microscopy of CdTe QDs-treated cells imaged with organelle-specific dyes revealed significant lysosomal damage attributable to the presence of Cd2+ and of reactive oxygen species (ROS), which can be formed via Cd2+-specific cellular pathways and/or via CdTe-triggered photoxidative processes involving singlet oxygen or electron transfer from excited QDs to oxygen. In summary, CdTe QDs induce cell death via mechanisms involving both Cd2+ and ROS accompanied by lysosomal enlargement and intracellular redistribution.  相似文献   
78.
A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: ‘gunshot residue characteristic’, ‘consistent with gunshot residue’ and environmental particles, respectively. Potential gunshot residue particles are manually checked and – if necessary – confirmed by the operating forensic scientist.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号