首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   751篇
  免费   79篇
  国内免费   1篇
化学   669篇
晶体学   1篇
力学   12篇
数学   105篇
物理学   44篇
  2023年   7篇
  2022年   9篇
  2021年   20篇
  2020年   34篇
  2019年   22篇
  2018年   11篇
  2017年   14篇
  2016年   49篇
  2015年   44篇
  2014年   65篇
  2013年   61篇
  2012年   78篇
  2011年   74篇
  2010年   52篇
  2009年   47篇
  2008年   42篇
  2007年   37篇
  2006年   32篇
  2005年   31篇
  2004年   29篇
  2003年   11篇
  2002年   21篇
  2001年   11篇
  2000年   3篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1992年   3篇
  1986年   2篇
  1916年   1篇
  1915年   1篇
排序方式: 共有831条查询结果,搜索用时 15 毫秒
51.
52.
Melting curves of Cu and Ni were measured in the laser-heated diamond cell to 97 GPa (3800 K) and 60 GPa (2970 K), respectively. The temperatures of Cu are in good agreement with recent theoretical calculations. The Cu melting slope (dT/dP) is about 2.5 times steeper than for Ni. The present results confirm the key role d-shell electrons play in determining the temperature dependence of high pressure melting curves in transition metals that have filled or partially filled d electron bands.  相似文献   
53.
A reliable and easy to use liquid chromatography/tandem mass spectrometry (LC/MS/MS) method without the use of sample extraction was developed for the simultaneous quantification of urinary concentrations of mephenytoin, a standard phenotyping substrate for the cytochrome P450 enzyme CYP2C19, and its phase I metabolites 4'-hydroxymephenytoin and nirvanol. Fifty microL of urine were diluted with a buffered beta-glucuronidase solution and incubated at 37 degrees C for 6 h followed by addition of methanol, containing the internal standard 4'-methoxymephenytoin. The chromatographic separation was achieved using a 100 x 3 mm, 5 micro Thermo Electron Aquasil C18 column with a gradient flow, increasing the organic fraction (acetonitrile/methanol 50:50) of the mobile phase from 10 to 90%. Quantification by triple-stage mass spectrometry (TSQ Quantum, Thermo Electron) was accomplished by negative electrospray ionization in the selected reaction monitoring mode. Linearity was observed for all substances in the concentration range 15-10 000 ng/mL. The lower limit of quantification (LLOQ) was 20 ng/mL for 4'-hydroxymephenytoin and 30 ng/mL for nirvanol and mephenytoin, respectively. Intra- and inter-day inaccuracy did not exceed 9.5% for all substances from LLOQ to 10 000 ng/mL. Intra- and inter-day precision were in the range of 0.8-10.5%. The method was validated according to international ICH and FDA guidelines and successfully applied for phenotyping of Caucasian male volunteers who received an oral dose of 50 mg mephenytoin.  相似文献   
54.
Stereochemistry, products, and driving forces of the "first and second Cinchona rearrangement" have been investigated and a unified theory is presented. The first cage expansion affords [3.2.2]azabicyclic alpha-amino ether and is formulated via a configurationally stable bridgehead iminium ion and quasiequatorial nucleophilic attack. The second cage expansion affords beta-functionalized [3.2.2]azabicycles. In this case a nonclassical nitrogen-bridged cation is postulated to account for retention of configuration and potential reversibility of the cage expansion. The second rearrangement is favored for the so-called cinch bases (6'-R = H) in trifluoroethanol. Stereoelectronic factors, electron demand at C9, ground state conformation, and solvent type are crucial in all cases. A two-step protocol for preparing 9-epi-configured Cinchona alkaloids from 9-nat precursors is described.  相似文献   
55.
Simulated Moving Bed separations of enantiomers or fine chemicals are usually carried out in the isocratic mode, i.e. by applying the same operating conditions (temperature, pressure, mobile phase composition, pH) in the whole SMB unit. However, it has been recently recognized that by properly modulating operating conditions in the SMB sections. i.e. Sections 1-4 normally, separation performance in terms of productivity and solvent consumption can be significantly improved. In this work, we study solvent gradient SMB (SG-SMB) operation, where the concentration of a modifier in the main solvent constituting the mobile phase is adjusted along the SMB unit, so as to have weaker retention of the species to be separated in the first two sections, and stronger retention in Sections 3 and 4. Overload chromatographic conditions are considered, where the adsorption behavior is characterized by a nonlinear competitive adsorption isotherm, e.g. a binary Langmuir isotherm. Design criteria to achieve complete separation are developed in the frame of the equilibrium theory of chromatography. The theoretical findings are discussed in view of typical effects of the modifier concentration on retention times and solubility of the species to be separated, and an overall assessment of the SG-SMB technology is attempted.  相似文献   
56.
57.
pH‐Cleavable cell‐laden microgels with excellent long‐term viabilities were fabricated by combining bioorthogonal strain‐promoted azide–alkyne cycloaddition (SPAAC) and droplet‐based microfluidics. Poly(ethylene glycol)dicyclooctyne and dendritic poly(glycerol azide) served as bioinert hydrogel precursors. Azide conjugation was performed using different substituted acid‐labile benzacetal linkers that allowed precise control of the microgel degradation kinetics in the interesting pH range between 4.5 and 7.4. By this means, a pH‐controlled release of the encapsulated cells was achieved upon demand with no effect on cell viability and spreading. As a result, the microgel particles can be used for temporary cell encapsulation, allowing the cells to be studied and manipulated during the encapsulation and then be isolated and harvested by decomposition of the microgel scaffolds.  相似文献   
58.
Four different geological sample types (a crude oil, a crude oil asphaltene, a reservoir core extract and a reservoir core asphaltene) have been characterized by negative ionization electrospray mass spectrometry at low and high mass resolution using a double‐focusing magnetic sector field mass spectrometer. The mass range, shape of the spectra and the signal distribution of the acidic constituents as well as the average molecular weights, the total ion abundance and signal intensity in the spectra were compared for the different sample types. Nominal mass classes have been evaluated and Kendrick mass plots were generated in order to identify homologous series. For the crude oil sample, accurate mass assignments were made by high‐resolution double‐focusing magnetic sector field mass spectrometry (DFMSFMS) and were compared with those obtained by negative ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). With both instrument types, compounds with the molecular composition CnH2n+zO2, among which carboxylic acids predominated, were the main acidic compound class detectable in negative ESI mass spectra. Good agreement was achieved for the double bond class distribution and the carbon number distribution of the O2 class. In addition, minor compound classes could be identified using FTICRMS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
59.
The oft‐claimed ‘good’ water solubility of the food color norbixin ( 3 ) could not be confirmed. In contrast, the potassium salt 5 of norbixin formed suitable dispersions. The surface and aggregation properties of salt 5 were investigated and compared with other naturally occurring and synthetic hydrophilic carotenoids (Table).  相似文献   
60.
Seven organo‐bridged bis[tris(arylchalcogenolato)tin] compounds with the general formulae (R′E)3Sn–R–Sn(ER′)3 (R = –(CH2)4–, 1,4‐bis(methyl)benzene, 4,4′‐bis(methyl)biphenyl; R′ = Ph, 1‐Np, 2‐Np; E = S, Se) were synthesized and characterized by means of X‐ray diffractometry as well as NMR spectroscopy. Three different conformations of the arylchalcogenolato groups ER′ with respect to the bridging group R were rationalized and explained by means of quantum chemical investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号