首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8133篇
  免费   425篇
  国内免费   37篇
化学   5692篇
晶体学   20篇
力学   205篇
数学   1401篇
物理学   1277篇
  2023年   76篇
  2022年   95篇
  2021年   137篇
  2020年   189篇
  2019年   190篇
  2018年   115篇
  2017年   115篇
  2016年   357篇
  2015年   317篇
  2014年   296篇
  2013年   473篇
  2012年   558篇
  2011年   655篇
  2010年   381篇
  2009年   324篇
  2008年   519篇
  2007年   465篇
  2006年   444篇
  2005年   411篇
  2004年   347篇
  2003年   322篇
  2002年   290篇
  2001年   170篇
  2000年   123篇
  1999年   122篇
  1998年   93篇
  1997年   102篇
  1996年   105篇
  1995年   90篇
  1994年   63篇
  1993年   65篇
  1992年   54篇
  1991年   36篇
  1990年   37篇
  1989年   30篇
  1988年   34篇
  1987年   27篇
  1986年   32篇
  1985年   25篇
  1984年   23篇
  1983年   15篇
  1982年   24篇
  1981年   18篇
  1980年   21篇
  1979年   13篇
  1978年   24篇
  1977年   14篇
  1975年   12篇
  1974年   14篇
  1970年   9篇
排序方式: 共有8595条查询结果,搜索用时 15 毫秒
201.
Reaction of 1,1-difluoroallene and tetrafluoroallene with a series of transition metal complex fragments yields the mononuclear allene complexes [CpMn(CO)(2)(allene)] (1), [(CO)(4)Fe(allene)] (2), [(Ph(3)P)(2)Pt(C(3)H(2)F(2))] (4), [Ir(PPh(3))(2)(C(3)H(2)F(2))(2)Cl] (5), and the dinuclear complexes [mu-eta(1)-eta(3)-C(3)H(2)F(2))Fe(2)(CO)(7)] (3), [Ir(PPh(3))(C(3)H(2)F(2))(2)Cl](2) (6), and [mu-eta(2)-eta(2)-C(3)H(2)F(2))(CpMo(CO)(2))(2)] (9), respectively. In attempts to synthesize cationic complexes of fluorinated allenes [CpFe(CO)(2)(C(CF(3))=CH(2))] (7a), [CpFe(CO)(2)(C(CF(3))=CF(2))] (7b) and [mu-I-(CpFe(CO)(2))(2)][B(C(6)H(3)-3,5-(CF(3))(2))(4)] were isolated. The spectroscopic and structural data of these complexes revealed that the 1,1-difluoroallene ligand is coordinated exclusively with the double bond containing the hydrogen-substituted carbon atom. 1,1-Difluoroallene and tetrafluoroallene proved to be powerful pi acceptor ligands.  相似文献   
202.
The trioxide, CF(3)OC(O)OOOC(O)OCF(3), reacts with NO(2) at 0 degrees C to yield the new peroxynitrate, CF(3)OC(O)OONO(2), which is stable for hours at room temperature. It is spectroscopically characterized and some thermal properties are reported. From the vapor pressure, ln(p/p(0)) = 14.06 - 4565/T, of the liquid above the melting point of -89 degrees C, the extrapolated boiling point is 52 degrees C. CF(3)OC(O)OONO(2) dissociates at higher temperatures and low pressures into the radicals CF(3)OC(O)OO and NO(2) as demonstrated by matrix isolation experiments. The matrix-isolated peroxy radicals consist in a rotameric mixture of trans,trans,trans-CF(3)OC(O)OO and trans,trans,cis-CF(3)OC(O)OO, where trans and cis denote dihedral angles of ca. 180 degrees and 0 degree, respectively, around beta F-C-O-C, beta C-O-C-O, and beta O-C-O-O, with an equilibrium composition dependent on the thermolysis temperature. The radical trans,trans,cis-CF(3)OC(O)OO is found to be ca. 3 kJ mol(-1) higher in enthalpy than trans,trans,trans-CF(3)OC(O)OO. DFT calculations are performed to support the vibrational assignments and to provide structural information about CF(3)OC(O)OONO(2).  相似文献   
203.
The influence of macromolecular architecture on the physical properties of polymeric materials has been studied by comparing poly(benzyl ether) dendrons with their exact linear analogues. The results clearly confirm the anticipation that dendrimers are unique when compared to other architectures. Physical properties, from hydrodynamic volume to crystallinity, were shown to be different, and in a comparative study of core encapsulation in macromolecules of different architecture, energy transduction from the polymer backbone to a porphyrin core was shown to be different for dendrimers as compared to that of isomeric four- or eight-arm star polymers. Fluorescence excitation revealed strong, morphology dependent intramolecular energy transfer in the three macromolecular isomers investigated. Even at high generations, the dendrimers exhibited the most efficient energy transfer, thereby indicating that the dendritic architecture affords superior site isolation to the central porphyrin it surrounds.  相似文献   
204.
Host-guest antenna materials   总被引:2,自引:0,他引:2  
The focus of this review is on host-guest composites with photonic antenna properties. The material generally consists of cylindrical zeolite L crystals the channels of which are filled with dye molecules. The synthesis is based on the fact that molecules can diffuse into individual channels. This means that, under the appropriate conditions, they can also leave the zeolite by the same way. In some cases, however, it is desirable to block their way out by adding a closure molecule. Functionalization of the closure molecules allows tuning of, for example, wettability, refractive index, and chemical reactivity. The supramolecular organization of the dyes inside the channels is a first stage of organization. It allows light harvesting within a certain volume of a dye-loaded nanocrystalline zeolite and radiationless transport to both ends of the cylinder or from the ends to the center. The second stage of organization is the coupling to an external acceptor or donor stopcock fluorophore at the ends of the channels, which can trap or inject electronic excitation energy. The third stage of organization is the coupling to an external device through a stopcock molecule. The wide-ranging tunability of these highly organized materials offers fascinating new possibilities for exploring excitation-energy-transfer phenomena, and challenges for developing new photonic devices.  相似文献   
205.
Dense planar and tubular oxygen separation membranes of La0.6Ca0.4Fe0.75Co0.25O3– were investigated as reactors for the partial oxidation (POX) of methane to syngas. Their permeation properties were measured in an air/argon pO2 gradient as a function of temperature. At 900 °C, the oxygen flux through a 1.26-mm-thick membrane was 0.075 mol/cm2·s and through a 0.25-mm-thick tube, 0.24 mol/cm2·s.For the POX measurements, a catalyst was added to the membrane and methane was introduced on the argon side. This resulted in a gradual increase of the oxygen flux with increasing concentration of methane, reaching 2 mol/cm2·s at 900 °C with pure methane. For the planar reactor, the CO selectivity reached 99% and the CH4 conversion 75% at 918 °C with pure methane. For the tubular reactor, the CO selectivity and CH4 conversion were 83 and 99%, respectively, under the same conditions. After 1,400 h of operation in a tubular POX reactor, the membrane was examined revealing phase demixing and local decomposition.Presented at the OSSEP Workshop Ionic and Mixed Conductors: Methods and Processes, Aveiro, Portugal, 10–12 April 2003  相似文献   
206.
An overview is given of intercalation materials for both the negative and the positive electrodes of lithium batteries, including the results of our own research. As well as lithium metal as a negative electrode, we consider insertion materials based on aluminium alloys. In the case of the positive electrode metal-oxides based on manganese, nickel and cobalt are discussed. Received: 27 May 1997 / Accepted: 30 July 1997  相似文献   
207.
The azacyclopentadienyl compounds (2,5-C4tBu2RHN)MCl3 (M = Ti, Zr, Hf; R = H, SiMe3) have been prepared as stable solids from the lithiated pyrroles and MCl4. The π-coordination of the azacyclopentadienyl ligands, as suggested from 13 C NMR data, has been confirmed for (2,5-C4tBu2H2N)TiCl3 by an X-ray diffraction study.  相似文献   
208.
209.
The absorption and emission spectra, excited-state lifetimes, quantum yields, and electrochemical measurements have been obtained for a new series of chiral complexes based on three different chiral 2,2':6',2' '-terpyridine ligands, (-)-ctpy, (-)-[ctpy-x-ctpy], and (-)-[ctpy-b-ctpy], with one, two, or multiple Ru metal centers. The room-temperature absorption and emission maxima of [[((-)-ctpy)Ru]-(-)-[ctpy-b-ctpy]-[Ru((-)-ctpy)]](PF(6))(4) and ((-)-[ctpy-b-ctpy])-[[Ru((-)-[ctpy-b-ctpy])](PF(6))(2)](n) were shifted to lower energies and also exhibited significantly longer luminescence lifetimes when compared to [Ru((-)-ctpy)(2)](PF(6))(2), [[((-)-ctpy)Ru]-(-)-[ctpy-x-ctpy]-[Ru((-)-ctpy)]](PF(6))(4), and ((-)-[ctpy-x-ctpy])-[[Ru((-)-[ctpy-x-ctpy])](PF(6))(2)](n). In terms of their electrochemical behavior, all of the complexes studied exhibited one Ru-centered and two ligand-centered redox waves and the [[((-)-ctpy)Ru]-(-)-[ctpy-x-ctpy]-[Ru((-)-ctpy)]](PF(6))(4), ((-)-[ctpy-x-ctpy])-[[Ru((-)-[ctpy-x-ctpy])](PF(6))(2)](n), and ((-)-[ctpy-b-ctpy])-[[Ru((-)-[ctpy-b-ctpy])](PF(6))(2)](n)() complexes were found to electrodeposit upon ligand-based reduction. The difference between the formal potentials of the Ru-centered and the first ligand-centered (least negative) waves corresponded linearly with the changes in the observed emission energies. The shifts in energy are discussed using a particle-in-a-box model, and the luminescence lifetimes are discussed in terms of the structure of the excited-state manifold.  相似文献   
210.
The development of tailored materials for specific applications is an active field of research in chemistry, material science and drug discovery. The number of possible molecules obtainable from a set of atomic species grow exponentially with the size of the system, limiting the efficiency of classical sampling algorithms. On the other hand, quantum computers can provide an efficient solution to the sampling of the chemical compound space for the optimization of a given molecular property. In this work, we propose a quantum algorithm for addressing the material design problem with a favourable scaling. The core of this approach is the representation of the space of candidate structures as a linear superposition of all possible atomic compositions. The corresponding ‘alchemical’ Hamiltonian drives the optimization in both the atomic and electronic spaces leading to the selection of the best fitting molecule, which optimizes a given property of the system, e.g., the interaction with an external potential as in drug design. The quantum advantage resides in the efficient calculation of the electronic structure properties together with the sampling of the exponentially large chemical compound space. We demonstrate both in simulations and with IBM Quantum hardware the efficiency of our scheme and highlight the results in a few test cases. This preliminary study can serve as a basis for the development of further material design quantum algorithms for near-term quantum computers.

‘Alchemical’ quantum algorithm for the simultaneous optimisation of chemical composition and electronic structure for material design. By exploiting quantum mechanical principles this approach will boost drug discovery in the near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号