首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   2篇
化学   80篇
晶体学   2篇
力学   14篇
数学   4篇
物理学   19篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   6篇
  2006年   5篇
  2005年   9篇
  2004年   12篇
  2003年   7篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1984年   3篇
  1983年   1篇
  1981年   4篇
  1974年   1篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
91.
A general boundary element methodology for studying the dilute solution transport of rigid macroions that contain gel layers on their outer surfaces is developed and applied to several model systems. The methodology can be applied to particles of arbitrary size, shape, charge distribution, and gel layer geometry. Account is also taken of the steady state distortion of the ion atmosphere from equilibrium, which makes it applicable to the transport of highly charged structures. The coupled field equations (Poisson, ion-transport, low-Reynolds-number Navier-Stokes, and Brinkman) are solved numerically and from this, transport properties (diffusion constants, electrophoretic mobilities, excess viscosities) can be computed. In the present work, the methodology is first applied to a gel sphere model over a wide range of particle charge and the resulting transport properties are found to be in excellent agreement with independent theory under those conditions where independent theory is available. It is then applied to several prolate spheroidal models of a particular silica sol sample in an attempt to identify possible solution structures. A single model, that is able to account simultaneously for all of the transport behavior, which does not undergo significant conformational change with salt concentration, could not be found. A model with a thin (相似文献   
92.
X-Ray structure analysis of a nepheline hydrate I crystal, Rb+-exchanged at 80°C, was performed making use only of the main diffractions. The resulting substructure was found to be orthorhombic with a = 8.0802(8), b = 15.259(2), c = 5.1584(5) Å, V = 636.0Å3, space group Pnm21. Fourier and least-squares techniques gave the residuals R = 0.048 and Rw = 0.058, and a tentative formula of RbNa2Al3Si3O12 · H2O (Z = 2, Dc = 2.65 g cm?3). Tetrahedral distances were consistent with Al,Si alternation in the framework. Of the channel species, Na(1) and Na(2) were found not to be exchangeable at the current temperature. These sodium atoms are located in the small cages, formed by 6-rings of O atoms which connect the 8-ring channels parallel to c into two-dimensional pore systems. In the larger tunnels the replacement was complete and these contain a Rb+ ion and probably a water molecule in symmetry-related positions. According to this model, Rb+ coordinates four oxygens of an 8-ring and two water molecules, with RbO distances in the range 2.81–3.36 Å. Additional O atoms are found at greater distances.  相似文献   
93.
The co-adsorption of Cd(II) and glyphosate (N-(phosphonomethyl)glycine, PMG) at the manganite (gamma-MnOOH) surface has been studied in the pH range 6-10 at 25 degrees C and with 0.1 M Na(Cl) as ionic medium. Batch adsorption experiments, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy were used for the quantitative analysis and the determination of the molecular structure of the surface complexes. The adsorption of Cd(II) and PMG in the ternary Cd(II)-PMG-manganite system was compared with the adsorption in the binary Cd(II)-manganite and PMG-manganite systems. The formation of three inner sphere surface complexes was observed, a ternary Cd(II)-PMG-manganite complex, a binary Cd(II)-manganite complex and a binary PMG-manganite complex. The surface concentration of the ternary complex and the Cd(II)-manganite complex was more or less constant throughout the pH range studied. However, the surface concentration of the binary PMG-manganite complex decreased with increasing pH. The major part of the binary PMG-surface complex was protonated. The ternary surface complex displayed a type B structure (Cd(II)-PMG-manganite). The average Cd-Mn distance obtained from EXAFS (3.26 A) indicates that the binary and ternary Cd(II)-surface complexes are formed by edge-sharing of Mn and Cd octahedra on the (010) plane of the manganite crystals.  相似文献   
94.
The coadsorption of Cu(II) and glyphosate (N-(phosphonomethyl)glycine, abbreviated to PMG) at the water-goethite interface was studied by means of batch adsorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The system was investigated over the pH range 3--9 and at total concentrations of 0.9 micromol and 2.2 micromol Cu(II) and PMG per m(2) of goethite. The collective quantitative and spectroscopic results show that Cu(II) and PMG directly interact at the water-goethite interface to form ternary surface complexes. Two predominating complexes have been identified. At pH 4 the IR and CuK-edge EXAFS data indicate a molecular structure where the phosphonate group of PMG bonds monodentately to the surface in an inner sphere mode, while carboxylate and amine groups coordinate to Cu(II) to form a 5-membered chelate ring. Hence, at pH 4, Cu(II) and PMG form a ternary surface complex on goethite with the general structure goethite-PMG-Cu(II). At the highest pH investigated (pH 9), the carboxylate group is still coordinated to Cu(II) but the phosphonate group is present in a relatively free, non-coordinated and/or disordered state. Although the spectroscopic data are not conclusive they indicate the formation of ternary surface complexes with the molecular architecture goethite-Cu(II)-PMG at high pH.  相似文献   
95.
The influence of the sorbent preparation protocol and separation parameters on the selectivity and chromatographic efficiency of super-porous molecularly imprinted polymer (MIP) monoliths in capillary electrochromatography (CEC) was studied. Chiral templates were employed and enantiomer separation and resolution were used as measures of imprint selectivity and column efficiency, respectively; the latter was in addition studied by chromatography of non-related aromatic structures. The polymer preparation was varied with respect to monomer composition in the pre-polymerisation mixture and also the use of single versus multiple template(s). The separation parameters investigated were type and content of organic solvent and surfactant modifier in the electrolyte. It was found that acetone and acetonitrile in buffer mixtures provided enantiomer separation of enantiomers of the template and also structural analogues; however, the degree of separation was greatly influenced by the content in the electrolyte. Three surfactants, sodium dodecylsulfate (SDS), cetyltrimethylammonium bromide (CTAB) and polyoxyethylene sorbitanmonolaurate (Tween 20), were examined as electrolyte modifiers. It was found that addition of SDS decreased and CTAB and Tween 20 increased the enantiomer separation. SDS and CTAB could be used up to 1 mM concentration whereas Tween could be used up to 90 mM concentration without causing baseline disturbances. The effects found and demonstrated strongly suggest that these parameters are to be considered during optimisation of an MIP-CEC system.  相似文献   
96.
The equilibrium residence times of the nonionic surfactant nonylphenol ethoxylate (NP100) in a latex dispersion were determined using NMR diffusometry. At 16% w/w particle concentration and 0.12, 0.43 and 0.81% w/w NP100, the residence times of the surfactant were 0.16, 1.02 and 4.73 s in solution (tau(A)) and 0.3, 0.37 and 0.61 s on the surface of the particles (tau(B)), respectively. At even higher particle concentration (>45% w/w), tau(A) and tau(B) were 1.47 and 2.2 s. Calculating the number of collisions that ought to result in adsorbed species, at 16% w/w, only 2, 5 and 2 per thousand (corresponding to 0.12, 0.43 and 0.81% w/w NP100) resulted in adsorption, whereas at >45% w/w, only 12 per thousand resulted in adsorption, which suggested that the surfactant was irreversibly adsorbed on the particles. The small increase in collision frequency with increased particle concentration could be a result of a diffusion controlled adsorption, while an energy barrier for desorption controlled the overall exchange dynamics in the dispersion. The slow dynamics in the dispersion was controlled, mainly by the nonylphenol group, which gave NP100 a strong preference to surfaces. In addition, the chain length of the poly(ethylene glycol) (PEG) group changed the solution behavior from being that of a typical surfactant to that of a polymer.  相似文献   
97.
Bacteria are able to coordinate gene expression as a community through the secretion and detection of signalling molecules so that the members of the community can simultaneously express specific behaviours. This mechanism of regulation of behaviour appears to be a key trait for adaptation to specific environments and has been shown to regulate a variety of important phenotypes, from virulence factor production to biofilm formation to symbiosis related behaviours such as bioluminescence. The ability to communicate and communally regulate gene expression is hypothesised to have evolved as a way for organisms to delay expression of phenotypes until numerical supremacy is reached. For example, in the case of infection, if an invading microorganism were to express virulence factors too early, the host may be able to mount a successful defence and repel the invaders. There is growing evidence that bacterial quorum sensing (QS) systems are involved in cross-kingdom signalling with eukaryotic organisms and that eukaryotes are capable of actively responding to bacteria in their environment by detecting and acting upon the presence of these signalling molecules. Likewise, eukaryotes produce compounds that can interfere with QS systems in bacteria by acting as agonists or antagonists. An exciting new field of study, biomimetics, takes inspiration from nature’s models and attempts to design solutions to human problems, and biomimics of QS systems may be one such solution. This article presents the acylated homoserine lactone and autoinducer 2 QS systems in bacteria, the means of intercepting or interfering with bacterial QS systems evolved by eukaryotes, and the rational design of synthetic antagonists. Figure Natural products, furanones, from the red alga Delisea pulchra inhibit the quorum sensing regulated production of violacein by Chromobacterium violaceum “The proof of evolution lies in those adaptations that arise from improbable foundations”—Stephen Jay Gould  相似文献   
98.
Pre-irradiation grafting as a means to modify commerical poly(vinylidene fluoride) (PVDF) membranes has been studied. The membranes prepared were weak cation-exchange membranes (acrylic acid functionality), anion-exchange membranes (trimethyl ammonium functionality) and temperature-sensitive membranes (N-isopropyl amide functionality). Different graft loads were obtained by varying reaction time, radiation dose and in the case of acrylic acid the graft solution composition. The trimethyl ammonium chloride functionality was obtained by grafting vinyl benzyl chloride onto a PVDF membrane and aminating the benzyl chloride groups in a 45% trimethyl amine–water solution. For a membrane grafted with 9 wt% acrylic acid the flux increased approximately 70 times when the pH was decreased from 6 to 2. For a membrane with 5 wt% trimethyl ammonium functionality the flux increased both when pH was decreased below 3 and increased above 11. For a membrane grafted with 18 wt% N-isopropyl acrylamide a sharp increase of flux was observed when the temperature was raised above 32°C.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号