首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   9篇
  国内免费   3篇
化学   140篇
晶体学   3篇
力学   6篇
数学   31篇
物理学   58篇
  2023年   3篇
  2022年   8篇
  2021年   3篇
  2020年   7篇
  2019年   8篇
  2018年   9篇
  2017年   8篇
  2016年   9篇
  2015年   9篇
  2014年   9篇
  2013年   17篇
  2012年   14篇
  2011年   9篇
  2010年   10篇
  2009年   9篇
  2008年   8篇
  2007年   18篇
  2006年   15篇
  2005年   14篇
  2004年   8篇
  2003年   7篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
231.
232.
The electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance owing to preferential catalyst–H formation and the consequential hydrogen evolution reaction (HER). Now, the Pt/Au electrocatalyst d‐band structure is electronically modified using zeolitic imidazole framework (ZIF) to achieve a Faradaic efficiency (FE) of >44 % with high ammonia yield rate of >161 μg mgcat?1 h?1 under ambient conditions. The strategy lowers electrocatalyst d‐band position to weaken H adsorption and concurrently creates electron‐deficient sites to kinetically drive NRR by promoting catalyst–N2 interaction. The ZIF coating on the electrocatalyst doubles as a hydrophobic layer to suppress HER, further improving FE by >44‐fold compared to without ZIF (ca. 1 %). The Pt/Au‐NZIF interaction is key to enable strong N2 adsorption over H atom.  相似文献   
233.
Let \({A=\{x\in \mathbb{R}^{2m}: 0 < a < |x| < b\}}\) be an annulus. We consider the following singularly perturbed elliptic problem on A $$\left\{\begin{array}{lll}-\varepsilon ^2{\Delta u} + |x|^{\eta}u =|x|^{\eta}u^p, \quad {\rm in} A,\\ u > 0, \quad \quad \quad \quad \quad \quad \quad {\rm in} A, \\ u=0, \quad \quad \quad \quad \quad \quad \quad {\rm on}\partial A,\end{array}\right. $$ where \({1 < p < \frac{m+3}{m-1}}\) . We shall prove the existence of a positive solution \({u_\epsilon }\) which concentrates on two different orthogonal spheres of dimension (m?1) as \({\varepsilon \to 0}\) . We achieve this by studying a reduced problem on an annular domain in \({\mathbb{R}^{m+1}}\) and analysing the profile of a two point concentrating solution in this domain.  相似文献   
234.
Granular type polyaniline (PANi), PANi nanofibers (NFs), and PANi nanotubes (NTs) expedient as working electrode materials for supercapacitors are synthesized. The synthesis procedure used in this work facilitates not only the synthesis of solid powders of the PANi nanostructures, but also thin films constituted by the same PANi nanostructures in the same experiment. PANi NFs are found to exhibit faster electrode kinetics and better capacitance when compared to PANi NTs and granular PANi. Specific capacitance and energy storage per unit mass of PANi NFs are 239.47 Fg?1 (at 0.5 Ag?1) and 43.2 Wh?kg?1, respectively. Electrical conductivity of PANi NFs is also better when compared to the other two nanostructures. Properties of the three PANi nanostructures are explicated in correlation with crystallinity, intrinsic oxidation state, doping degree, BET surface area, and ordered mesoporosity pertaining to the nanostructures.  相似文献   
235.
Nanocrystalline diamond/β-SiC composite films are synthesized by microwave plasma chemical vapor deposition using a gas mixture of H2, CH4, and tetramethylsilane (Si(CH3)4, TMS) in a single process step. Structural and compositional analyses revealed that the films consist of a mixture of diamond and β-SiC nanocrystalline phases in a desired volume fraction combinatorial form. Transmission electron microscopy analysis confirmed the X-ray diffraction results and showed that the major diffraction lines corresponded to a two-component nanocrystalline composite film. Infrared spectroscopic analysis showed that the content of β-SiC in the films can be increased by increasing the TMS concentration. This correlated very well with electron probe microanalysis and Rutherford backscattering analysis that showed an almost linear correspondence of β-SiC content in the films with the TMS concentration in the gas phase. The phase purity of the diamond crystallites decreased with increase in the β-SiC content in the films, as shown by micro Raman scattering studies. Smooth surface morphologies are measured for these films by using atomic force microscopy; the root mean square roughness was 12 ± 1 nm. The β-SiC volume fraction (vol. %) was identified as an important compositional factor to determine any mechanical and frictional properties of these films. PACS 68.55.-a; 68.55.Nq; 68.60.-p  相似文献   
236.
Kamzin  A. S.  Valiullin  A. A.  Khurshid  H.  Nemati  Z.  Srikanth  H.  Phan  M. H. 《Physics of the Solid State》2018,60(2):382-389
Physics of the Solid State - FeO/Fe3O4 nanoparticles were synthesized by thermal decomposition. Electron microscopy revealed that these nanoparticles were of the core-shell type and had a spherical...  相似文献   
237.
Parkinson’s disease (PD) and Alzheimer’s disease (AD) are neurodegenerative disorders that have emerged as among the serious health problems of the 21st century. The medications currently available to treat AD and PD have limited efficacy and are associated with side effects. Natural products are one of the most vital and conservative sources of medicines for treating neurological problems. Karanjin is a furanoflavonoid, isolated mainly from Pongamia pinnata with several medicinal plants, and has been reported for numerous health benefits. However, the effect of karanjin on AD and PD has not yet been systematically investigated. To evaluate the neuroprotective effect of karanjin, extensive in silico studies starting with molecular docking against five putative targets for AD and four targets for PD were conducted. The findings were compared with three standard drugs using Auto Dock 4.1 and Molegro Virtual Docker software. Additionally, the physiochemical properties (Lipinski rule of five), drug-likeness and parameters including absorption, distribution, metabolism, elimination and toxicity (ADMET) profiles of karanjin were also studied. The molecular dynamics (MD) simulations were performed with two selective karanjin docking complexes to analyze the dynamic behaviors and binding free energy at 100 ns time scale. In addition, frontier molecular orbitals (FMOs) and density-functional theory (DFT) were also investigated from computational quantum mechanism perspectives using the Avogadro-ORCA 1.2.0 platform. Karanjin complies with all five of Lipinski’s drug-likeness rules with suitable ADMET profiles for therapeutic use. The docking scores (kcal/mol) showed comparatively higher potency against AD and PD associated targets than currently used standard drugs. Overall, the potential binding affinity from molecular docking, static thermodynamics feature from MD-simulation and other multiparametric drug-ability profiles suggest that karanjin could be considered as a suitable therapeutic lead for AD and PD treatment. Furthermore, the present results were strongly correlated with the earlier study on karanjin in an Alzheimer’s animal model. However, necessary in vivo studies, clinical trials, bioavailability, permeability and safe dose administration, etc. must be required to use karanjin as a potential drug against AD and PD treatment, where the in silico results are more helpful to accelerate the drug development.  相似文献   
238.
Azepino[3,4,5-cd]indole derivatives represent the core scaffold of important natural products and biologically relevant compounds. Therefore, the establishment of step- and atom-economic strategies to access this class of compounds is of paramount importance. To this end, complexity-to-diversity (CtD) strategy has become one of the most important tools that transforms complex molecules into diverse skeleta. However, many of the reactions that could be employed in CtD are restricted by the functional handles exist in these molecules. This limits the achievement of the desired skeletal diversity. Herein, an efficient and step-economic strategy to access a diverse collection of azepino-[3,4,5-cd]indole architectures through a cascade that combines Pictet-Spengler with Michael addition, is described. This was achieved by reacting cyclohexadienone acetaldehydes 2 a – 2 d with indolyl-4-ethyl amine 1 . Employing a CtD strategy on the developed azepino-[3,4,5-cd]indoles, a rapid rearrangement reaction that provided a modular, chemo- and diastereoselective access to diverse collection of spiro azepinocarbazole nature-inspired frameworks, was encountered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号