首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3593篇
  免费   96篇
  国内免费   2篇
化学   2361篇
晶体学   39篇
力学   71篇
数学   259篇
物理学   961篇
  2023年   37篇
  2022年   62篇
  2021年   59篇
  2020年   88篇
  2019年   103篇
  2018年   68篇
  2017年   58篇
  2016年   126篇
  2015年   72篇
  2014年   122篇
  2013年   234篇
  2012年   232篇
  2011年   287篇
  2010年   173篇
  2009年   145篇
  2008年   214篇
  2007年   181篇
  2006年   161篇
  2005年   138篇
  2004年   110篇
  2003年   75篇
  2002年   74篇
  2001年   60篇
  2000年   57篇
  1999年   46篇
  1998年   29篇
  1997年   23篇
  1996年   38篇
  1995年   29篇
  1994年   35篇
  1993年   43篇
  1992年   29篇
  1991年   27篇
  1989年   19篇
  1988年   21篇
  1987年   27篇
  1986年   21篇
  1985年   19篇
  1984年   31篇
  1983年   20篇
  1982年   22篇
  1981年   30篇
  1980年   19篇
  1979年   27篇
  1978年   16篇
  1977年   18篇
  1976年   16篇
  1975年   15篇
  1973年   11篇
  1957年   13篇
排序方式: 共有3691条查询结果,搜索用时 15 毫秒
991.
The title compound, C25H35N3O2, is a novel urea derivative. Pairs of intermolecular N—H...O hydrogen bonds join the molecules into centrosymmetric R22(12) and R22(18) dimeric rings, which are alternately linked into one‐dimensional polymeric chains along the [010] direction. The parallel chains are connected via C—H...O hydrogen bonds to generate a two‐dimensional framework structure parallel to the (001) plane. The title compound was also modelled by solid‐state density functional theory (DFT) calculations. A comparison of the molecular conformation and hydrogen‐bond geometry obtained from the X‐ray structure analysis and the theoretical study clearly indicates that the DFT calculation agrees closely with the X‐ray structure.  相似文献   
992.
Four new nickel(II) complexes, [Ni(2)L(2)(NO(2))(2)]·CH(2)Cl(2)·C(2)H(5)OH, 2H(2)O (1), [Ni(2)L(2)(DMF)(2)(μ-NO(2))]ClO(4)·DMF (2a), [Ni(2)L(2)(DMF)(2)(μ-NO(2))]ClO(4) (2b) and [Ni(3)L'(2)(μ(3)-NO(2))(2)(CH(2)Cl(2))](n)·1.5H(2)O (3) where HL = 2-[(3-amino-propylimino)-methyl]-phenol, H(2)L(') = 2-({3-[(2-hydroxy-benzylidene)-amino]-propylimino}-methyl)-phenol and DMF = N,N-dimethylformamide, have been synthesized starting with the precursor complex [NiL(2)]·2H(2)O, nickel(ii) perchlorate and sodium nitrite and characterized structurally and magnetically. The structural analyses reveal that in all the complexes, Ni(II) ions possess a distorted octahedral geometry. Complex 1 is a dinuclear di-μ(2)-phenoxo bridged species in which nitrite ion acts as chelating co-ligand. Complexes 2a and 2b also consist of dinuclear entities, but in these two compounds a cis-(μ-nitrito-1κO:2κN) bridge is present in addition to the di-μ(2)-phenoxo bridge. The molecular structures of 2a and 2b are equivalent; they differ only in that 2a contains an additional solvated DMF molecule. Complex 3 is formed by ligand rearrangement and is a one-dimensional polymer in which double phenoxo as well as μ-nitrito-1κO:2κN bridged trinuclear units are linked through a very rare μ(3)-nitrito-1κO:2κN:3κO' bridge. Analysis of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the nickel(ii) ions in four complexes, with exchange parameters J of -5.26, -11.45, -10.66 and -5.99 cm(-1) for 1, 2a, 2b and 3, respectively.  相似文献   
993.
Sulfur is an important element has many practical applications when present as nanoparticles. Despite the practicable applications, limited studies are available in the literature related to synthesis of sulfur nanoparticles. Growth kinetics of colloidal sulfur particles synthesized from aqueous solutions using different surfactants have been studied here. The effects of different parameters such as reactant concentration, temperature, sonication, types of acids, types of surfactants, and even surfactant concentration are studied on the growth kinetics. Since the reaction rate is fast, particle growth depends on the parameters which affect diffusion of sulfur molecules. There is a linear relationship found among the reactant concentration and the particle coarsening rate constant. The growth kinetics was studied in the presence of different surfactants such as nonionic (poly(oxyethylene) p-tert-octylphenyl ether, TX-100), anionic (sodium dodecylbenzene sulfonate, SDBS), cationic (cetyltrimethyammonium bromide, CTAB) and results show the coarsening constant changes according to the following order: water>TX-100>SDBS>CTAB. The particle growth rate also depends on the surfactant concentration, coarsening rate constant decreases with the increase in surfactant concentration and become constant close to the critical micellar concentration (CMC). The coarsening rate constant also highly depends on the types of acid used as catalyst.  相似文献   
994.
We have studied the interfacial electron-transfer dynamics on TiO(2) film sensitized with synthesized ruthenium(II)-polypyridyl complexes--[Ru(II)(bpy)(2)(L(1))] (1) and [Ru(II)(bpy)(L(1))(L(2))] (2), in which bpy=2,2'-bipyridyl, L(1)=4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol, and L(2)=4-(N,N-dimethylaminophenyl)-2,2'-bipyridine-by using femtosecond transient absorption spectroscopy. The presence of electron-donor L(2) and electron-acceptor L(1) ligands in complex 2 introduces lower energetic ligand-to-ligand charge-transfer (LLCT) excited states in addition to metal-to-ligand (ML) CT manifolds of complex 2. On photoexcitation, a pulse-width-limited (<100 fs) electron injection from populating LLCT and MLCT states are observed on account of strong catecholate binding on the TiO(2) surface. The hole is transferred directly or stepwise to the electron-donor ligand (L(2)) as a consequence of electron injection from LLCT and MLCT states, respectively. This results an increased spatial charge separation between the hole residing at the electron-donor (L(2)) ligand and the electron injected in TiO(2) nanoparticles (NPs). Thus, we observed a significant slow back-electron-transfer (BET) process in the 2/TiO(2) system relative to the 1/TiO(2) system. Our results suggest that Ru(II) -polypyridyl complexes comprising LLCT states can be a better photosensitizer for improved electron injection yield and slow BET processes in comparison with Ru(II)-polypyridyl complexes comprising MLCT states only.  相似文献   
995.
The interaction of sodium N-lauroylsarcosinate (SLS) with N-cetylpyridinium chloride (CPC) and N-dodecylpyridinium chloride (DPC) was investigated in aqueous mixtures. A strong interaction between the anionic and cationic surfactants was observed. The interaction parameter, β was determined for a wide composition range and was found to be negative. The mixed systems were found to have much lower critical micelle concentration (cmc) and surface tension at cmc. The surfactant mixtures exhibit synergism in the range of molar fractions investigated. The self-assembly formation in the mixtures of different compositions and total concentrations were studied using a number of techniques, including surface tension, fluorescence spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), confocal fluorescence microscopy (CFM). Thermodynamically stable unilamellar vesicles were observed to form upon mixing of the anionic and cationic surfactants in a wide range of composition and concentrations in buffered aqueous media. TEM as well as DLS measurements were performed to obtain shape and size of the vesicular structures, respectively. These unilamellar vesicles are stable for periods as long as 3 months and appear to be the equilibrium form of aggregation. Effect of pH, and temperature on the stability was investigated. The vesicular structures were observed to be stable at pH as low as 2.0 and at biological temperature (37°C). In presence of 10 mol% of cholesterol the mixed surfactant vesicles exhibited leakage of the encapsulated calcein dye, showing potential application in pH-triggered drug release.  相似文献   
996.
The reaction of [(Cp*Ta)(2)B(4)H(9)(μ-BH(4))] (1; Cp* = η(5)-C(5)Me(5)) with [Fe(2)(CO)(9)] in hexane yielded [(Cp*Ta)(2)B(5)H(7){Fe(CO)(3)}(2)] (2) and [(Cp*Ta)(2)B(5)H(9){Fe(CO)(3)}(4)] (3) in moderate yield. Cluster 2 represents the first example of a bicapped pentagonal-bipyramidal metallaborane with a deformed equatorial plane, and 3 can be described as a fused cluster in which two pentagonal-bipyramidal units are fused through a common 3-vertex triangular face. Compounds 2 and 3 have been characterized by mass spectrometry and IR, (1)H, (11)B, and (13)C NMR spectroscopy, and the geometric structures were unequivocally established by crystallographic analysis.  相似文献   
997.
The [2 + 3] cycloaddition reactions (which are greatly accelerated by microwave irradiation) of the di(azido)platinum(II) compounds cis-[Pt(N(3))(2)(PPh(3))(2)] (1) with cyanopyridines NCR (2) (R = 4-, 3-, and 2-NC(5)H(4)) give the corresponding bis(pyridyltetrazolato) complexes trans-[Pt(N(4)CR)(2)(PPh(3))(2)] (3) [R = 4-NC(5)H(4) (3a), 3-NC(5)H(4) (3b), and 2-NC(5)H(4) (3c)]. Compound 3c has been characterized as the N(1)N(2)-bonded isomer in the solid state by X-ray crystallography and represents the first bis(tetrazolato) complex of this kind. Complexes 3a and 3b have been used as metallaligands to generate heteronuclear coordination polymers in the presence of copper nitrate. A one-dimensional supramolecular architecture was obtained as the exclusive product, {trans-[Pt(2)(N(4)CR)(4)(PPh(3))(4)Cu](n)(NO(3))(2n).nH(2)O (4.nH(2)O) (R = 4-NC(5)H(4)), when 3a was employed, whereas with 3b the heteronuclear square complex trans-[Pt(N(4)CR)(2)(PPh(3))(2)Cu(NO(3))(2)(H(2)O)](2) (5) (R = 3-NC(5)H(4)), composed of Pt/Cu ions, was obtained. All the isolated complexes were characterized by IR, elemental, and (for 3b, 3c, 4, and 5) X-ray structural analyses. Complexes 3 were additionally characterized by (1)H, (13)C, and (31)P {(1)H} NMR spectroscopies.  相似文献   
998.
A new C3-symmetric drum-shaped homoditopic haxaamino bicyclic cyclophane and its hexachloride and hexaiodide complexes have been synthesized and characterized and dual recognition of guests has been demonstrated. Single-crystal X-ray analysis illustrates that bicyclic cyclophane has a cavity and side pockets for acetone molecules. The hexaprotonated state of this bicycle shows encapsulation of an iodide inside its cavity, and in hexachloride complex, chloride is recognized as Cl(-)...H2O in each of the three side pockets which are in extensive hydrogen bonding interactions with the water and chlorides. (1)H NMR experiments have also been carried out on hexatosylated cyclophane with the halides to study solution state binding.  相似文献   
999.
Exceptionally high peroxidase-like and catalase-like activities of iron(III)-TAML activators of H 2O 2 ( 1: Tetra-Amidato-Macrocyclic-Ligand Fe (III) complexes [ F e{1,2-X 2C 6H 2-4,5-( NCOCMe 2 NCO) 2CR 2}(OH 2)] (-)) are reported from pH 6-12.4 and 25-45 degrees C. Oxidation of the cyclometalated 2-phenylpyridine organometallic complex, [Ru (II)( o-C 6H 4py)(phen) 2]PF 6 ( 2) or "ruthenium dye", occurs via the equation [ Ru II ] + 1/2 H 2 O 2 + H +-->(Fe III - TAML) [ Ru III ] + H 2 O, following a simple rate law rate = k obs (per)[ 1][H 2O 2], that is, the rate is independent of the concentration of 2 at all pHs and temperatures studied. The kinetics of the catalase-like activity (H 2 O 2 -->(Fe III - TAML) H 2 O + 1/2 O 2) obeys a similar rate law: rate = k obs (cat)[ 1][H 2O 2]). The rate constants, k obs (per) and k obs (cat), are strongly and similarly pH dependent, with a maximum around pH 10. Both bell-shaped pH profiles are quantitatively accounted for in terms of a common mechanism based on the known speciation of 1 and H 2O 2 in this pH range. Complexes 1 exist as axial diaqua species [FeL(H 2O) 2] (-) ( 1 aqua) which are deprotonated to afford [FeL(OH)(H 2O)] (2-) ( 1 OH) at pH 9-10. The pathways 1 aqua + H 2O 2 ( k 1), 1 OH + H 2O 2 ( k 2), and 1 OH + HO 2 (-) ( k 4) afford one or more oxidized Fe-TAML species that further rapidly oxidize the dye (peroxidase-like activity) or a second H 2O 2 molecule (catalase-like activity). This mechanism is supported by the observations that (i) the catalase-like activity of 1 is controllably retarded by addition of reducing agents into solution and (ii) second order kinetics in H 2O 2 has been observed when the rate of O 2 evolution was monitored in the presence of added reducing agents. The performances of the 1 complexes in catalyzing H 2O 2 oxidations are shown to compare favorably with the peroxidases further establishing Fe (III)-TAML activators as miniaturized enzyme replicas with the potential to greatly expand the technological utility of hydrogen peroxide.  相似文献   
1000.
We have synthesized ruthenium(II) polypyridyl complexes (1) Ru(II)(bpy)(2)(L(1)), (2) Ru(II)(bpy)(2)(L(2)) and (3) Ru(II)(bpy)(L(1))(L(2)), where bpy = 2,2'-bipyridyl, L(1) = 4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol) and L(2) = 4-(N,N-dimethylamino-phenyl)-(2,2'-bipyridine) and investigated the intra-ligand charge transfer (ILCT) and ligand-ligand charge transfer (LLCT) states by optical absorption and emission studies. Our studies show that the presence of electron donating -NMe(2) functionality in L(2) and electron withdrawing catechol fragment in L(1) ligands of complex 3 introduces low energy LLCT excited states to aboriginal MLCT states. The superimposed LLCT and MLCT state produces redshift and broadening in the optical absorption spectra of complex 3 in comparison to complexes 1 and 2. The emission quantum yield of complex 3 is observed to be extremely low in comparison to that of complex 1 and 2 at room temperature. This is attributed to quenching of the (3)MLCT state by the low-emissive (3)LLCT state. The emission due to ligand localized CT state (ILCT and LLCT) of complexes 2 and 3 is revealed at 77 K in the form of a new luminescence band which appeared in the 670-760 nm region. The LLCT excited state of complex 3 is populated either via direct photoexcitation in the LLCT absorption band (350-700 nm) or through internal conversion from the photoexcited (3)MLCT (400-600 nm) states. The internal conversion rate is determined by quenching of the (3)MLCT state in a time resolved emission study. The internal conversion to LLCT and ILCT excited states are observed to be as fast as ~200 ps and ~700 ps for complexes 3 and 2, respectively. The present study illustrates the photophysical property of the ligand localized excited state of newly synthesized heteroleptic ruthenium(II) polypyridyl complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号