排序方式: 共有46条查询结果,搜索用时 15 毫秒
21.
22.
Relevant equivalent circuit parameters and values of material constants of a piezoelectric resonator can be determined from measurements of its electrical input impedance as a function of frequency. The complex electrical impedance curves and the associated critical frequencies are the basis of this characterization by the piezoelectric resonance method. In this paper, the previously introduced concept of normalized electrical impedance of the lossy resonator, extended to include piezoelectric losses, is applied to the analysis of the effects of different types of intrinsic losses on peak values, bandwidths and characteristic frequencies. The resulting impedance patterns depend solely on the electromechanical coupling coefficient and the loss tangents, providing a useful tool for the analysis of low-Q resonators. The normalized impedance is experimentally evaluated from the basic data provided by an HP 4194A impedance analyser by means of specifically developed ASP programs. 相似文献
23.
24.
25.
26.
Three sharp absorption features in the energy range 2.36–2.55 eV have been detected in the transmission spectrum of Co-diffused ZnSe, and a number of luminescence transitions originating from the lowest of these states at 2.361 eV have been observed. Photoluminescence excitation spectra prove that these are high energy excited states of the Co2+Zn impurity, a conclusion confirmed by comparison of measured and predicted luminescence energies. This represents the first identification of luminescence branching from a higher excited state of a transition metal ion in any semiconductor. The sharp, weakly phonon-coupled transitions involve either intra-impurity excitation or transitions from the impurity to localised states split off from a minimum in the conduction band. The implications of these observations for the mechanism of host-impurity energy transfer and for the nature of the excited state wavefunctions are discussed. 相似文献
27.
Hydrogenic (two-body) systems are the only atomic systems for which uncertainties in calculations of the energy levels approach the current state of the art in frequency measurement. This article discusses progress in the theory and measurement of transition frequencies in hydrogenic systems. These studies have relevance to the determination of fundamental constants and the testing of physical theories, especially quantum electrodynamics. A set of high accuracy calculable frequency standards could also be realized by using hydrogenic systems. 相似文献
28.
29.
Pyranine (8-hydroxyl-1,3,6-pyrene-trisulfonate) was used as a pH-probe to test whether there is a light-induced proton release to the bulk phase during the photochemical reaction cycle of sensory rhodopsin-I (SR-I). We conclude that the retinylidene Schiff-base proton is retained by SR-I-containing envelope vesicles during the SR-I photocycle under the conditions described here. Bacteriorhodopsin containing vesicles were used as a control to show that light-induced proton release can be observed under identical data acquisition parameters as those used for SR-I-containing vesicles. In addition, the effects of extravesicular pH on the absorption maximum (lambda max) and the SR-I photocycle were studied. SR-I properties are insensitive to pH in the range approximately 3 to approximately 8 with lambda max remaining at 587 nm. The lambda max shifts to 565 nm below pH 3.0 and to 552 nm at pH 10.8 with an apparent pKa of 8.5. Flash-induced absorbance changes of SR-I are described under neutral, alkaline and acidic conditions. The neutral, alkaline and acid SR-I forms each undergo similar photoreactions producing long-lived (> 500 ms decay half-time) blue-shifted intermediates. The UV/near-UV absorption of the photoproducts from neutral and alkaline SR-I indicate a deprotonated Schiff base, whereas acid SR-I produces a species with lambda max > 460 nm indicative of a protonated Schiff base. 相似文献
30.
Bayraktar H Fields AP Kralj JM Spudich JL Rothschild KJ Cohen AE 《Photochemistry and photobiology》2012,88(1):90-97
Microbial rhodopsins are an important class of light-activated transmembrane proteins whose function is typically studied on bulk samples. Herein, we apply photochromic fluorescence resonance energy transfer to investigate the dynamics of these proteins with sensitivity approaching the single-molecule limit. The brightness of a covalently linked organic fluorophore is modulated by changes in the absorption spectrum of the endogenous retinal chromophore that occur as the molecule undergoes a light-activated photocycle. We studied the photocycles of blue-absorbing proteorhodopsin and sensory rhodopsin II (SRII). Clusters of 2-3 molecules of SRII clearly showed a light-induced photocycle. Single molecules of SRII showed a photocycle upon signal averaging over several illumination cycles. 相似文献