排序方式: 共有103条查询结果,搜索用时 16 毫秒
61.
In the present paper, dynamics of generalized charged particles are studied in the presence of external electromagnetic interactions. This particular extension of the free relativistic particle model lives in Non-Commutative κ-Minkowski space–time, compatible with Doubly Special Relativity, that is motivated to describe Quantum Gravity effects. Furthermore we have also considered the electromagnetic field to be dynamical and have derived the modified forms of Lienard–Wiechert like potentials for these extended charged particle models. In all the above cases we exploit the new and extended form of κ-Minkowski algebra where electromagnetic effects are incorporated in the lowest order, in the Dirac framework of Hamiltonian constraint analysis. 相似文献
62.
Souvik Dhara Johan S. H. van Leeuwaarden Debankur Mukherjee 《Journal of statistical physics》2018,173(3-4):872-894
A notorious problem in mathematics and physics is to create a solvable model for random sequential adsorption of non-overlapping congruent spheres in the d-dimensional Euclidean space with \(d\ge 2\). Spheres arrive sequentially at uniformly chosen locations in space and are accepted only when there is no overlap with previously deposited spheres. Due to spatial correlations, characterizing the fraction of accepted spheres remains largely intractable. We study this fraction by taking a novel approach that compares random sequential adsorption in Euclidean space to the nearest-neighbor blocking on a sequence of clustered random graphs. This random network model can be thought of as a corrected mean-field model for the interaction graph between the attempted spheres. Using functional limit theorems, we characterize the fraction of accepted spheres and its fluctuations. 相似文献
63.
We carry out both four-dimensional (4D×2D) and six-dimensional (6D) quantum dynamics on a parametrically time- and temperature-dependent effective Hamiltonian for H2/D2(v = 0,j = 0)–Ni(100) collision process. Such an effective potential was derived within a theoretical framework of mean-field approximation by considering weakly correlated interaction between molecular degrees of freedom, phonon modes and electron– hole pair (elhp) coupling through a Hartree-product-type wave function, where the initial state distribution of the surface modes and elhp coupling were introduced through Bose– Einstein and Fermi– Dirac probability factor, respectively. The temperature-dependent dissociation and state-to-state transition probabilities for H2/D2(v = 0,j = 0)–Ni(100) system are depicted as a function of initial kinetic energ of the incoming diatom. Though such effect appears negligibly small for H2(v = 0,j = 0)–Ni(100) system, it is prominent in the case of D2(v = 0,j = 0)–Ni(100) collision. It appears that the change of dissociation and transition probabilities of D2 with the increase of surface temperature is exclusively dictated by the phonon modes directed along Z-axis, but the effect of elhp coupling particularly for transition probabilities is insignificant. 相似文献
64.
Interface engineering with an MOCVD grown ZnO interface passivation layer for ZrO2-GaAs metal-oxide-semiconductor devices 总被引:1,自引:0,他引:1
This work deals with the fabrication of a GaAs metal-oxide-semiconductor device with an unpinned interface environment. An ultrathin (∼2 nm) interface passivation layer (IPL) of ZnO on GaAs was grown by metal organic chemical vapor deposition to control the interface trap densities and to prevent the Fermi level pinning before high-k deposition. X-ray photoelectron spectroscopy and high resolution transmission electron microscopy results show that an ultra thin layer of ZnO IPL can effectively suppress the oxides formation and minimize the Fermi level pinning at the interface between the GaAs and ZrO2. By incorporating ZnO IPL, GaAs MOS devices with improved capacitance-voltage and reduced gate leakage current were achieved. The charge trapping behavior of the ZrO2/ZnO gate stack under constant voltage stressing exhibits an improved interface quality and high dielectric reliability. 相似文献
65.
66.
67.
68.
69.
Dr. Souvik Kusari Dr. Simplice Joel N. Tatsimo Dr. Sebastian Zühlke Dr. Ferdinand M. Talontsi Prof. Dr. Simeon Fogue Kouam Prof. Dr. Michael Spiteller 《Angewandte Chemie (International ed. in English)》2014,53(45):12073-12076
We have independently investigated the source of tramadol, a synthetic analgesic largely used for treating moderate to severe pain in humans, recently found in the roots of the Cameroonian medicinal plant, Nauclea latifolia. We found tramadol and its three major mammalian metabolites (O‐desmethyltramadol, N‐desmethyltramadol, and 4‐hydroxycyclohexyltramadol) in the roots of N. latifolia and five other plant species, and also in soil and local water bodies only in the Far North region of Cameroon. The off‐label administration of tramadol to cattle in this region leads to cross‐contamination of the soil and water through feces and urine containing parent tramadol as well as tramadol metabolites produced in the animals. These compounds can then be absorbed by the plant roots and also leached into the local water supplies. The presence of tramadol in roots is, thus, due to an anthropogenic contamination with the synthetic compound. 相似文献
70.
Vaibhav M. Jadhav Vinod Scaria Dr. Souvik Maiti Dr. 《Angewandte Chemie (International ed. in English)》2009,48(14):2557-2560
Many important cellular processes are regulated by small endogenous noncoding RNAs known as microRNAs (miRNAs). The precise molecular function of many miRNAs is unknown; different loss‐of‐function methods are required to gain insight into the biology of these small RNA molecules. Nucleic acid enzymes termed antagomirzymes are now shown to be valuable tools for the specific knockdown of miRNA in vitro and in vivo (see scheme).