首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   1篇
化学   80篇
力学   4篇
数学   9篇
物理学   13篇
  2024年   3篇
  2023年   4篇
  2022年   4篇
  2021年   2篇
  2020年   9篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   9篇
  2015年   5篇
  2014年   5篇
  2013年   1篇
  2012年   4篇
  2011年   8篇
  2010年   5篇
  2009年   4篇
  2008年   9篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   7篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
61.
Endophytes constitute a remarkably multifarious group of microorganisms ubiquitous in plants and maintain an imperceptible association with their hosts for at least a part of their life cycle. Their enormous biological diversity coupled with their capability to biosynthesize bioactive secondary metabolites has provided the impetus for a number of investigations on endophytes. Here, we highlight the possible current and future strategies of understanding the chemical communication of endophytic fungi with other endophytes (fungi and bacteria) and with their host plants, which might not only allow the discovery and sustainable production of desirable natural products but also other mostly overlooked bioactive secondary metabolites.  相似文献   
62.
    
Heavy metals in drinking water have become a severe threat to human health. Detection of heavy metals has been achieved by electrochemical sensors that are modified with complex nanocomposites; however, reproducibility of these sensors is still a big challenge when applied in commercial settings. Here, a simple, very robust, and sensitive electrochemical sensor based on a screen-printed carbon electrode modified with butterfly-shaped silver nanostructure (AgNS/SPCE) has been developed for the concurrent determination of cadmium (II), lead (II), copper (II), and mercury (II) in water samples. The electrochemical behavior of the modified electrodes was investigated using cyclic voltammetry and differential pulse anodic stripping voltammetry. The AgNS/SPCE showed distinct peak potentials and a significant increase in the peak currents for all heavy metals, attributed to the high electrical conductivity and electrocatalytic activity of the synthesized butterfly-shaped AgNS. Moreover, the excellent stability and sensitivity towards simultaneous quantification of heavy metals have been obtained with detection limits of 0.4 ppb, 2.5 ppb, 7.3 ppb, and 0.7 ppb for Cd (II), Pb (II), Cu (II), and Hg (II), respectively. Besides, the constructed sensor was successfully applied to simultaneously quantify target heavy metals in spiked water samples. Owing to excellent sensitivity, high robustness, affordability, and fast response, the presented electrochemical sensor could be incorporated into a portable and miniaturized potentiostat device, making it a promising method for on-site water analysis.  相似文献   
63.
We carry out both four-dimensional (4D×2D) and six-dimensional (6D) quantum dynamics on a parametrically time- and temperature-dependent effective Hamiltonian for H2/D2(v = 0,j = 0)–Ni(100) collision process. Such an effective potential was derived within a theoretical framework of mean-field approximation by considering weakly correlated interaction between molecular degrees of freedom, phonon modes and electron– hole pair (elhp) coupling through a Hartree-product-type wave function, where the initial state distribution of the surface modes and elhp coupling were introduced through Bose– Einstein and Fermi– Dirac probability factor, respectively. The temperature-dependent dissociation and state-to-state transition probabilities for H2/D2(v = 0,j = 0)–Ni(100) system are depicted as a function of initial kinetic energ of the incoming diatom. Though such effect appears negligibly small for H2(v = 0,j = 0)–Ni(100) system, it is prominent in the case of D2(v = 0,j = 0)–Ni(100) collision. It appears that the change of dissociation and transition probabilities of D2 with the increase of surface temperature is exclusively dictated by the phonon modes directed along Z-axis, but the effect of elhp coupling particularly for transition probabilities is insignificant.  相似文献   
64.
65.
In many practical situations exploratory plots are helpful in understanding tail behavior of sample data. The Mean Excess plot is one of the exploratory tools often used in practice to understand the right tail behavior of a data set. It is known that if the underlying distribution of a data sample is in the maximum domain of attraction of a Fréchet, a Gumbel or a Weibull distributions then the ME plot of the data approaches a straight line in an appropriate sense, with positive, zero or negative slope respectively. In this paper we construct confidence intervals around the ME plots which assist us in ascertaining which particular maximum domain of attraction the data set comes from. We recall weak limit results for the Fréchet domain of attraction, already obtained in Das and Ghosh (Bernoulli 19, 308–342 2013) and derive weak limits for the Gumbel and Weibull domains in order to construct confidence bounds. We demonstrate our methodology by applying them to simulated and real data sets.  相似文献   
66.
In the present paper, dynamics of generalized charged particles are studied in the presence of external electromagnetic interactions. This particular extension of the free relativistic particle model lives in Non-Commutative κκ-Minkowski space–time, compatible with Doubly Special Relativity, that is motivated to describe Quantum Gravity effects. Furthermore we have also considered the electromagnetic field to be dynamical and have derived the modified forms of Lienard–Wiechert like potentials for these extended charged particle models. In all the above cases we exploit the new and extended form of κκ-Minkowski algebra where electromagnetic effects are incorporated in the lowest order, in the Dirac framework of Hamiltonian constraint analysis.  相似文献   
67.
We experimentally characterize the performance of a miniature thermomagnetic pump, where suitably imposed temperature and magnetic field gradients are used to drive ferrofluid in a 2 mm diameter glass capillary tube, without application of any external pressure gradient. Such a pump can operate in a hermetically sealed micro electromechanical system configuration without any moving part, and is thus capable of handling microfluidic samples with little risk of contamination. In the experiment, the ferrofluid in the capillary is exposed to a magnetic field using a solenoid; a small resistive heater wrapped on the tube wall is used to create temperature gradient in such a way that the Kelvin body force in the medium produces a net unbalanced axial component. This causes a thermomagnetic pumping action, transporting the ferrofluid in the capillary tube from the colder end to the warmer end. Performance of the thermomagnetic pump is investigated experimentally to characterize the pump pressure head and discharge under different working conditions, namely, the magnetic field strength, heating power, and ferrofluid properties. A comparison with two other field actuation pumps at comparable length scales is also presented. The pump produces higher output at lower power supplies and magnetic field compared to the other two pumps.  相似文献   
68.
This work deals with the fabrication of a GaAs metal-oxide-semiconductor device with an unpinned interface environment. An ultrathin (∼2 nm) interface passivation layer (IPL) of ZnO on GaAs was grown by metal organic chemical vapor deposition to control the interface trap densities and to prevent the Fermi level pinning before high-k deposition. X-ray photoelectron spectroscopy and high resolution transmission electron microscopy results show that an ultra thin layer of ZnO IPL can effectively suppress the oxides formation and minimize the Fermi level pinning at the interface between the GaAs and ZrO2. By incorporating ZnO IPL, GaAs MOS devices with improved capacitance-voltage and reduced gate leakage current were achieved. The charge trapping behavior of the ZrO2/ZnO gate stack under constant voltage stressing exhibits an improved interface quality and high dielectric reliability.  相似文献   
69.
A notorious problem in mathematics and physics is to create a solvable model for random sequential adsorption of non-overlapping congruent spheres in the d-dimensional Euclidean space with \(d\ge 2\). Spheres arrive sequentially at uniformly chosen locations in space and are accepted only when there is no overlap with previously deposited spheres. Due to spatial correlations, characterizing the fraction of accepted spheres remains largely intractable. We study this fraction by taking a novel approach that compares random sequential adsorption in Euclidean space to the nearest-neighbor blocking on a sequence of clustered random graphs. This random network model can be thought of as a corrected mean-field model for the interaction graph between the attempted spheres. Using functional limit theorems, we characterize the fraction of accepted spheres and its fluctuations.  相似文献   
70.
    
Many important cellular processes are regulated by small endogenous noncoding RNAs known as microRNAs (miRNAs). The precise molecular function of many miRNAs is unknown; different loss‐of‐function methods are required to gain insight into the biology of these small RNA molecules. Nucleic acid enzymes termed antagomirzymes are now shown to be valuable tools for the specific knockdown of miRNA in vitro and in vivo (see scheme).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号