首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   4篇
化学   77篇
力学   4篇
数学   9篇
物理学   13篇
  2024年   3篇
  2023年   4篇
  2022年   4篇
  2021年   2篇
  2020年   9篇
  2019年   4篇
  2018年   3篇
  2016年   9篇
  2015年   5篇
  2014年   5篇
  2013年   1篇
  2012年   4篇
  2011年   8篇
  2010年   5篇
  2009年   4篇
  2008年   9篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   7篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
41.
Solvent‐dependent switching of graphene oxide (GO) as fluorescence quencher or enhancer was observed. In some solvents, GO increases the fluorescence yield of a hydrophilic molecule 7‐(diethylamino)‐coumarin‐3‐carboxylic acid (7‐DCA), and in some solvents GO act as a quencher of fluorescence.  相似文献   
42.
43.
Detailed attention to the interaction between graphene oxide (GO) and various organic fluorophores has been documented in literature as a result of which the impact of GO on the photophysical properties of the fluorophores is well known to the scientific community. However, the photoluminescence (PL) properties of GO in polar aprotic solvents are yet to be established. In this article, the PL properties of GO in polar aprotic solvents using various spectroscopic techniques have been reported. n-π* transition due to the C=O bonds in the sp3 hybrid regions and π-π* transition due to C=C bonds in the sp2 hybrid are prominent in GO. The presence of quasi-molecules within sp2-sp3 domains acts as PL centers located in the sp3 matrixes of GO are responsible for the PL properties. This study showcases the presence of multiple emissive states of GO in polar aprotic solvents and conveys the fact that the PL properties of GO are very much wavelength-dependent.  相似文献   
44.
The bottom-up approach of supramolecular polymerization is an effective synthetic method for functional organic nanostructures. However, the uncontrolled growth and polydisperse structural outcome often lead to low functional efficiency. Thus, precise control over the structural characteristics of supramolecular polymers is the current scientific hurdle. Research so far has tended to focus on systems with inherent kinetic control by the presence of metastable state monomers either through conformational molecular design or by exploring pathway complexity. The need of the hour is to create generic strategies for dormant states of monomers that can be extended to different molecules and various structural organizations and dimensions. Here we venture to demonstrate chemical reaction-driven cooperative supramolecular polymerization as an alternative strategy for the controlled synthesis of organic two-dimensional nanostructures. In our approach, the dynamic imine bond is exploited to convert a non-assembling dormant monomer to an activated amphiphilic structure in a kinetically controlled manner. The chemical reaction governed retarded nucleation–elongation growth provides control over dispersity and size.

We report the kinetically controlled supramolecular polymerization of organic two-dimensional charge-transfer nanostructures via a chemical reaction (imine)-driven approach.  相似文献   
45.
46.
If their thermal conductivity can be lowered, polyacetylene (PA) and polyaniline (PANI) offer examples of electrically conducting polymers that can have potential use as thermoelectrics. Thermal transport in such polymers is primarily influenced by bonded interactions and chain orientations relative to the direction of heat transfer. We employ molecular dynamics simulations to investigate two mechanisms to control the phonon thermal transport in PANI and PA, namely, (1) mechanical strain and (2) polymer combinations. The molecular configurations of PA and PANI have a significant influence on their thermal transport characteristics. The axial thermal conductivity increases when a polymer is axially stretched but decreases under transverse tension. Since the strain dependence of the thermal conductivity is related to the phonon scattering among neighboring polymer chains, this behavior is examined through Herman's orientation factor that quantifies the degree of chain alignment in a given direction. The conductivity is enhanced as adjacent chains become more aligned along the direction of heat conduction but diminishes when they are orthogonally oriented to it. Physically combining these polymers reduces the thermal conductivity, which reaches a minimum value for a 2:3 PANI/PA chain ratio.  相似文献   
47.
In this paper, a predator–prey–disease model with immune response in the infected prey is formulated. The basic reproduction number of the within-host model is defined and it is found that there are three equilibria: extinction equilibrium, infection-free equilibrium and infection-persistent equilibrium. The stabilities of these equilibria are completely determined by the reproduction number of the within-host model. Furthermore, we define a basic reproduction number of the between-host model and two predator invasion numbers: predator invasion number in the absence of disease and predator invasion number in the presence of disease. We have predator and infection-free equilibrium, infection-free equilibrium, predator-free equilibrium and a co-existence equilibrium. We determine the local stabilities of these equilibria with conditions on the reproduction and invasion reproduction numbers. Finally, we show that the predator-free equilibrium is globally stable.  相似文献   
48.
Proteomics deals with the study of proteins, their structures, localizations, posttranslational modifications, functions and interactions with other proteins. The mapping of protein structure-function holds the key to a better understanding of cellular functions under both normal and disease states, which is critical for modern drug discovery. However, the study of human proteome presents scientists with a task much more daunting than the human genome project. In fact, the estimated >100,000 different proteins expressed from 30,000 to 40,000 human genes make it extremely challenging, if not impossible with existing protein analysis techniques, to map the entire cellular functions at the translational level. Consequently, there have been rapid advances in the techniques and methods capable of large-scale proteomic studies. Among them, the recently developed high-throughput screening methods have enabled scientists to analyze proteins quickly and efficiently at an organism-wide scale. Herein, we overview some of these emerging tools for high-throughput protein analysis. In particular, we focus on recent advances in the bioassay development, which has provided sensitive and selective tools for high-throughput identification and characterizations of enzymes. Finally, the recently developed bioimaging techniques to visualize and quantify proteins in living cells are also discussed.  相似文献   
49.
50.
4OR - This paper analyzes a finite-buffer queueing system, where customers arrive in batches and the accepted customers are served in batches by a single server. The service is assumed to be...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号