排序方式: 共有103条查询结果,搜索用时 13 毫秒
1.
In this paper, the deformation of the Heisenberg algebra, consistent with both the generalized uncertainty principle and doubly special relativity, has been analyzed. It has been observed that, though this algebra can give rise to fractional derivative terms in the corresponding quantum mechanical Hamiltonian, a formal meaning can be given to them by using the theory of harmonic extensions of function. Depending on this argument, the expression of the propagator of the path integral corresponding to the deformed Heisenberg algebra, has been obtained. In particular, the consistent expression of the one dimensional free particle propagator has been evaluated explicitly. With this propagator in hand, it has been shown that, even in free particle case, normal generalized uncertainty principle and doubly special relativity show very much different result. 相似文献
2.
We obtain cosmological solutions which admit emergent universe (EU) scenario in the framework of Einstein Gauss–Bonnet (GB)
gravity coupled with a dilaton field in 4-dimensions. The coupling parameter of the GB terms and the dilaton in the theory
are determined for obtaining an EU scenario. The corresponding dilaton potential which admits such scenario is determined.
It is found that the GB terms coupled with a dilaton field plays an important role in describing the dynamics of the evolution
of the early as well as the late universe. We note an interesting case where the GB term dominates initially in the asymptotic
past regime, subsequently it decreases and thereafter its contribution in determining the dynamics of the evolution dominates
once again. We note that the Einstein’s static universe solution permitted here is unstable which the asymptotic EU might
follow. We also compare our EU model with supernova data. 相似文献
3.
4.
Reyhaneh Armin Sebastian Zühlke Gisela Grunewaldt-Stcker Felix Mahnkopp-Dirks Souvik Kusari 《Molecules (Basel, Switzerland)》2021,26(12)
Apple Replant Disease (ARD) is a significant problem in apple orchards that causes root tissue damage, stunted plant growth, and decline in fruit quality, size, and overall yield. Dysbiosis of apple root-associated microbiome and selective richness of Streptomyces species in the rhizosphere typically concurs root impairment associated with ARD. However, possible roles of Streptomyces secondary metabolites within these observations remain unstudied. Therefore, we employed the One Strain Many Compounds (OSMAC) approach coupled to high-performance liquid chromatography-high-resolution tandem mass spectrometry (HPLC-HRMSn) to evaluate the chemical ecology of an apple root-associated Streptomyces ciscaucasicus strain GS2, temporally over 14 days. The chemical OSMAC approach comprised cultivation media alterations using six different media compositions, which led to the biosynthesis of the iron-chelated siderophores, ferrioxamines. The biological OSMAC approach was concomitantly applied by dual-culture cultivation for microorganismal interactions with an endophytic Streptomyces pulveraceus strain ES16 and the pathogen Cylindrocarpon olidum. This led to the modulation of ferrioxamines produced and further triggered biosynthesis of the unchelated siderophores, desferrioxamines. The structures of the compounds were elucidated using HRMSn and by comparison with the literature. We evaluated the dynamics of siderophore production under the combined influence of chemical and biological OSMAC triggers, temporally over 3, 7, and 14 days, to discern the strain’s siderophore-mediated chemical ecology. We discuss our results based on the plausible chemical implications of S. ciscaucasicus strain GS2 in the rhizosphere. 相似文献
5.
This article designs an efficient two‐class pattern classifier utilizing asynchronous cellular automata (ACAs). The two‐state three‐neighborhood one‐dimensional ACAs that converge to fixed points from arbitrary seeds are used here for pattern classification. To design the classifier, (1) we first identify a set of ACAs that always converge to fixed points from any seeds, (2) each ACA should have at least two but not huge number of fixed point attractors, and (3) the convergence time of these ACAs are not to be exponential. To address the second issue, we propose a graph, coined as fixed point graph of an ACA that facilitates in counting the fixed points. We further perform an experimental study to estimate the convergence time of ACAs, and find there are some convergent ACAs which demand exponential convergence time. Finally, we identify there are 73 (out of 256) ACAs which can be effective candidates as pattern classifier. We use each of the candidate ACAs on some standard datasets, and observe the effectiveness of each ACAs as pattern classifier. It is observed that the proposed classifier is very competitive and performs reliably better than many standard existing classifier algorithms. © 2016 Wiley Periodicals, Inc. Complexity 21: 370–386, 2016 相似文献
6.
7.
Zhu Q Girish A Chattopadhaya S Yao SQ 《Chemical communications (Cambridge, England)》2004,(13):1512-1513
In this article, we report the design and synthesis of a group of novel activity-based probes that target different protease sub-classes based on their substrate specificities, rather than their enzymatic mechanisms. The feasibility of our approach has been demonstrated by using representative members of the different protease sub-classes. 相似文献
8.
Nanoparticles from cationic copolymer and DNA that are soluble and stable in common organic solvents
DNA by virtue of its superlative ability to self-assemble has found use beyond biological research in the design and fabrication of nanomaterials. However, developing novel DNA-based materials for chemical applications might be restricted due to the insoluble nature of DNA in most common organic solvents. In this Communication, we are reporting the first demonstration of making DNA soluble in a variety of nonbiological solvents such as acetonitrile, benzene, dimethyl sulfoxide (DMSO), and tetrahydrofuran with the help of poly(ethylene glycol) (PEG)-based cationic random copolymers. Because of complex formation between cationic copolymer and anionic DNA, nanoparticles are formed. These nanoparticles are expected to exhibit micelle-like structures with a nanometric core of cationic units neutralized by phosphate anions of DNA, surrounded by a shell of PEG segments. As PEG is soluble in the organic solvents used in this study, nanoparticles are stable in these solvents, making entrapped DNA soluble in these organic solvents. 相似文献
9.
Nisha CK Manorama SV Ganguli M Maiti S Kizhakkedathu JN 《Langmuir : the ACS journal of surfaces and colloids》2004,20(6):2386-2396
Complete biophysical characterization of complexes (polyplexes) of cationic polymers and DNA is needed to understand the mechanism underlying nonviral therapeutic gene transfer. In this article, we propose a new series of synthesized random cationic polymers (RCPs) from methoxy poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride with different mole ratios (32:68, 11:89, and 6:94) which could be used as a model system to address and answer the basic questions relating to the mechanism of the interaction of calf thymus DNA (CT-DNA) and cationic polymers. The solubility of the complexes of CT-DNA and RCP was followed by turbidity measurements. It has been observed that complexes of RCP with 68 mol % MePEGMA precipitate near the charge neutralization point, whereas complexes of the other two polymers are water-soluble and stable at all compositions. Dnase 1 digestion experiments show that DNA is inaccessible when it forms complexes with RCP. Ethidium bromide exclusion and gel electrophoretic mobility show that both polymers are capable of binding with CT-DNA. Atomic force microscopy images in conjunction with light scattering experiments showed that the complexes are spherical in nature and 75-100 nm in diameter. Circular dichroism spectroscopy studies indicated that the secondary structure of DNA in the complexes is not perturbed due to the presence of poly(ethylene glycol) segments in the polymer. Furthermore, we used a combination of spectroscopic and calorimetric techniques to determine complete thermodynamic profiles accompanying the helix-coil transition of CT-DNA in the complexes. UV and differential scanning calorimetry melting experiments revealed that DNA in the complexes is more stable than in the free state and the extent of stability depends on the polymer composition. Isothermal titration calorimetry experiments showed that the binding of these RCPs to CT-DNA is associated with small exothermic enthalpy changes. A complete thermodynamic profile showed that the RCP/DNA complex formation is entropically favorable. Much broader opportunities to vary the architecture of the polymers studied here make these systems promising in addressing various basic and practical problems in gene delivery systems. 相似文献