首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1241篇
  免费   43篇
化学   863篇
晶体学   18篇
力学   40篇
数学   92篇
物理学   271篇
  2024年   3篇
  2023年   23篇
  2022年   28篇
  2021年   34篇
  2020年   40篇
  2019年   44篇
  2018年   37篇
  2017年   32篇
  2016年   57篇
  2015年   36篇
  2014年   55篇
  2013年   83篇
  2012年   114篇
  2011年   107篇
  2010年   57篇
  2009年   41篇
  2008年   62篇
  2007年   66篇
  2006年   46篇
  2005年   46篇
  2004年   38篇
  2003年   30篇
  2002年   30篇
  2001年   16篇
  2000年   13篇
  1999年   10篇
  1998年   9篇
  1997年   9篇
  1996年   15篇
  1995年   8篇
  1994年   6篇
  1993年   9篇
  1992年   8篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   7篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1979年   7篇
  1978年   7篇
  1976年   4篇
  1973年   2篇
  1969年   3篇
  1966年   1篇
排序方式: 共有1284条查询结果,搜索用时 15 毫秒
11.
An improved synthesis of trivinylaluminum (V3Al) is described. The proton magnetic resonance (PMR) spectrum of V3Al was recorded and analyzed. A new vinylation method involving the use of V3Al as the vinylating agent has been developed, and the vinylation of organic halides by V3Al was studied at ?30, ?50 and ?70°C. Primary alkyl chlorides, such as methyl and methylene chloride, do not react with V3Al and were used as solvents. Secondary chlorides such as 2-chloropropane also do not react. t-Butyl chloride gives rise to t-butylethylene (70–98%), depending on reaction conditions, and the allylic chlorides, 3-chloro-1-butene, and 3-chloro-3-methyl-1-butene, yield the expected vinylated products and their isomers (~90%). Allyl and benzyl chloride do not react under the conditions tried. The reaction between V3Al and the ditertiary dichloride 2,6-dichloro-2,6-dimethylheptane yields several isomeric C13H24 and C11H20 hydrocarbons; however, surprisingly, C9H16 does not form. The C13 hydrocarbons arise by divinylation at the termini of the dichloride, while the C11 hydrocarbons are formed by vinylation at one and proton elimination at the other terminus of the dichloride. The presence of unsaturated C13H24 and C11H20 isomers is most likely due to proton induced isomerization. These results are explained by a proximity effect involving vinylation at one end of the dichloride by V3Al followed by rapid reaction of the second chlorine (mostly) by V2AlCl generated in situ during the first vinylation in the proximity of the chloride. At the other chlorine terminus V2AlCl causes either a second vinylation (leading to C13 hydrocarbons) or a proton elimination (leading to C11 hydrocarbons). The absence of C9H16 among the reaction products indicates that V3Al exclusively effects vinylation. The RCl + V3Al ← RV + V2AlCl reaction may be regarded as a model for initiation followed by immediate termination in cationic olefin polymerization, a process leading to vinyl-ended polymers.  相似文献   
12.
Dilute aqueous solutions of cytosine were irradiated with60Co -rays under N2O saturated conditions at different pH and in the presence of Cu(II) ions at neutral pH. The base degradation decreased from neutral to acidic and basic conditions. In the presence of metal ions at neutral pH conditions there was a significant increase in the base degradation compared to that in the absence of metal ions under similar conditions. From the difference absorption spectra and fluorescence behavior of the irradiated solutions it was observed that the major radiolytic products of cytosine under different conditions are cytosine glycols, 5-hydroxycytosine, hydroxy-hydrocytosine and cytosine dimers. The yields of dimers is maximum in neutral conditions and it decreased from basic to acidic conditions. However, in the presence of Cu(II) ions formation of cytosine dimers is completely restricted and there is an increase in the yields of cytosine glycol, hydroxy-hydrocytosine and 5-hydroxycytosine. From the post-radiolytic changes in absorption and fluorescence behavior of irradiated solutions, it is revealed that some of the radiolytic products, namely cytosine glycol and hydroxy-hydrocytosine decompose to 5-hydroxycytosine and cytosine, respectively.  相似文献   
13.
BackgroundThe recent pandemic by COVID-19 is a global threat to human health. The disease is caused by SARS-CoV-2 and the infection rate is increased more quickly than MERS and SARS as their rapid adaptation to varied climatic conditions through rapid mutations. It becomes more severe due to the lack of proper therapeutic drugs, insufficient diagnostic tool, scarcity of appropriate drug, life supporting medical facility and mostly lack of awareness. Therefore, preventive measure is one of the important strategies to control. In this context, herbal medicinal plants received a noticeable attention to treat COVID-19 in Indian subcontinent. Here, 44 Indian traditional plants have been discussed with their novel phytochemicals that prevent the novel corona virus. The basic of SARS-CoV-2, their common way of transmission including their effect on immune and nervous system have been discussed. We have analysed their mechanism of action against COVID-19 following in-silico analysis. Their probable mechanism and therapeutic approaches behind the activity of phytochemicals to stimulate immune response as well as inhibition of viral multiplication discussed rationally. Thus, mixtures of active secondary metabolites/phytochemicals are the only choice to prevent the disease in countries where vaccination will take long time due to overcrowded population density.  相似文献   
14.
In spite of large spin coherence length in graphene due to small spin–orbit coupling, the created potential barrier and antiferromagnetic coupling at graphene/transition metal (TM) contacts strongly reduce the spin transport behavior in graphene. Keeping these critical issues in mind in the present work, ferromagnetic (Co, Ni) nanosheets are grown on graphene surface to elucidate the nature of interaction at the graphene/ferromagnetic interface to improve the spin transistor characteristics. Temperature dependent magnetoconductance shows unusual behavior exhibiting giant enhancement in magnetoconductance with increasing temperature. A model based on spin–orbit coupling operated at the graphene/TM interface is proposed to explain this anomalous result. We believe that the device performance can be improved remarkably tuning the spin–orbit coupling at the interface of graphene based spin transistor. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
15.
This review paper covers the low temperature wet growth of nano-engineered particles of ZnO-based mixed metal oxides, their growth mechanism, and characterization using X-ray diffraction, SEM, TEM and IR, UV–visible, and XPS spectral techniques. Main focus of this article is centered on low temperature semi-wet methods of synthesis that are suitable for large scale production of zinc oxide-based systems mixed with iron oxide, copper oxide, nickel oxide and cobalt oxide. These mixed metal oxides have broad industrial applications as catalyst, semiconductors, adsorbents, superconductors, electro-ceramics, and antifungal agents in addition to extensive applications in medicines. This paper discusses the low-cost and environment friendly synthesis of these mixed metal oxides, measurement of properties and applicability of these materials systems.  相似文献   
16.
A new Ni4 distorted cubane complex [Ni43-OMe)4Q4(MeOH)4] (1) (where Q is the anion of 8-quinolinol) is obtained from the reaction of NaQ with Ni(OAc)2 · 4H2O in refluxing MeOH via solvent derived μ3-OMe assisted self-assembly of four nickel(II) centres. The periphery of [Ni4(OMe)4] cubane is covered by four Q and four MeOH molecules. This methanol specific reaction is not supported in solvent glycinol (Hgl; NH2(CH2)2OH), an amine substituted ethanol, producing monomeric [NiQ2(Hgl)2] · 2H2O (2 · 2H2O) instead and is able to cleave 1 to yield 2 · 2H2O. The cryomagnetic susceptibility data of powdered 1 can be modeled by a two J equation yielding J1 = −1.8(1) cm−1, J2 = 3.9(1) cm−1 and g = 2.24.  相似文献   
17.
Rapidity correlations in 800 GeV proton interactions with emulsion nuclei are investigated for different targets and multiplicity regions. To study the energy dependence, the results have been compared with proton interactions at 200 GeV and 400 GeV. A common feature of all the interactions is the existence of strong, short-range correlations. However, no dependence of cluster parameters on primary energy or target mass is found. A marginal increase of correlation strength with multiplicity is observed. Received: 30 March 2001 / Accepted: 18 September 2001  相似文献   
18.
The HLLEM scheme is a popular contact and shear preserving approximate Riemann solver that is known to be plagued by various forms of numerical shock instability. In this paper, we clarify that the shock instability exhibited by this scheme is primarily triggered by the spurious activation of the antidiffusive terms present in the first and third Riemann flux components on the transverse interfaces adjoining the shock front due to numerical perturbations. These erroneously activated terms are shown to counteract the favorable damping mechanism provided by its inherent HLL-type diffusive terms, causing an unphysical variation of the conserved quantity ρu both along and across the numerical shock. To prevent this, two distinct strategies are proposed termed as S elective W ave M odification and A nti D iffusion C ontrol. The former focuses on enhancing the quantity of the favorable HLL-type dissipation available on these critical flux components by carefully increasing the magnitudes of certain nonlinear wave speed estimates, while the latter focuses on directly controlling the magnitude of these critical antidiffusive terms. A linear perturbation analysis is performed to gauge the effectiveness of these cures and to estimate a von Neumann–type stability bounds on the CFL number associated with their use. Results from a variety of classic shock instability test cases show that the proposed strategies are able to provide excellent shock stable solutions even on grids that are highly elongated across the shock front without compromising the accuracy on inviscid contact or shear dominated viscous flows.  相似文献   
19.
Density functional theory (DFT) of freezing has been used to investigate the freezing transitions in a system of colloidal particles confined to a two-dimensional plane. The particles interact via a model Hertzian type potential of varying softness. The pair-correlation functions (PCFs) needed as input structural information in DFT are calculated by solving hypernetted chain (HNC) integral equation theory. The PCFs thus obtained have been compared with those obtained through experiment and simulations and are found to be in good qualitative agreement. We found that the PCFs are sensitive to the softness of the potential: showing splitting of pair-correlation peak in the harder case and anomalous non-monotonic density dependence in the softer case. Using the common tangent construction method, we have also proposed the fluid-triangular solid phase diagrams in the temperature-density plane. We found that the phase diagram exhibit solid-fluid coexistence region whose thickness decreases with the increasing temperature as well as with increasing softness of the potential. In the temperature and density range of our calculation, DFT fails to produce any reentrance in the phase diagram.  相似文献   
20.
A series of boron-containing lipids were prepared by reactions of cyclic oxonium derivatives of polyhedron boranes and metallacarboranes (closo-dodecaborate anion, cobalt and iron bis(dicarbollides)) with amine and carboxylic acids which are derived from cholesterol. Stable liposomal formulations, on the basis of synthesized boron-containing lipids, hydrogenated soybean l -α-phosphatidylcholine and (HSPC) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG) as excipients, were prepared and then characterized by dynamic light scattering (DLS) that revealed the formation of particles to be smaller than 200 nm in diameter. The resulting liposomal formulations showed moderate to excellent loading and entrapment efficiency, thus justifying the design of the compounds to fit in the lipid bilayer and ensuring ease of in vivo use for future application. The liposomal formulations based on cobalt and iron bis(dicarbollide)-based lipids were found to be nontoxic against both human breast normal epithelial cells MCF-10A and human breast cancer cells MCF-7.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号