首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1477篇
  免费   52篇
  国内免费   8篇
化学   867篇
晶体学   10篇
力学   69篇
数学   88篇
物理学   503篇
  2023年   26篇
  2022年   28篇
  2021年   54篇
  2020年   44篇
  2019年   40篇
  2018年   40篇
  2017年   41篇
  2016年   55篇
  2015年   38篇
  2014年   55篇
  2013年   119篇
  2012年   108篇
  2011年   129篇
  2010年   56篇
  2009年   48篇
  2008年   78篇
  2007年   75篇
  2006年   77篇
  2005年   60篇
  2004年   40篇
  2003年   35篇
  2002年   30篇
  2001年   17篇
  2000年   14篇
  1999年   9篇
  1998年   14篇
  1997年   14篇
  1996年   21篇
  1995年   18篇
  1994年   16篇
  1993年   9篇
  1992年   14篇
  1991年   5篇
  1990年   8篇
  1989年   8篇
  1988年   6篇
  1987年   2篇
  1986年   7篇
  1985年   11篇
  1984年   10篇
  1983年   7篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   9篇
  1978年   7篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1969年   2篇
排序方式: 共有1537条查询结果,搜索用时 31 毫秒
991.
We report on the defect-dominated light emission and ultraviolet (UV) photoconductivity characteristics of ZnO nanorods (NRs) fabricated using a facile, cost-effective, and catalyst-free thermal decomposition route under varying reaction temperatures. The morphological and structural studies reveal the formation of homogeneous quality nanorods in large scale at the highest reaction temperature of 600 °C. The luminescence feature of the nanorods is dominated by the defect related emission over the typical band edge emission. The variation of band-edge and native defect-related emission response of the samples has been correlated to the morphology and microstructure. In photoconductivity studies, the IV characteristics of the ZnO NRs prepared at different reaction temperatures in dark and under UV illumination (λ=365 nm) follow the power law, i.e., IαV r . An enhanced ultraviolet photodetection has been observed in the nanorods fabricated at the highest reaction temperature of 600 °C. The sample prepared at highest reaction temperature of 600 °C exhibits UV photosensitivity value (photo-to-dark current ratio) of around 1.18×103, which is much higher in magnitude compared to that of the samples prepared at lower reaction temperatures. The enhanced photoconductivity may be assigned to the development of uniformity and homogeneity of the nanorods. Further development of such ZnO nanostructures can form the basis of promising prototype luminescent and UV photodetecting devices.  相似文献   
992.
In this work, we have examined the emergent scenario in brane world model for phantom and tachyonic matter. For tachyonic matter field we have obtained emergent scenario is possible for closed, open and flat model of the universe with some restriction of potential. For normal scalar field the emergent scenario is possible only for closed model and the result is identical with the work of Ellis et al. (Class. Quantum Gravity 21:223, 2004), but for phantom field the emergent scenario is possible for closed, open and flat model of the universe with some restriction of potential.  相似文献   
993.
We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ(13) is not very small.  相似文献   
994.
In the present paper, we present thermal and electrical transport properties of pristine and co-doped samples of high temperature superconductors Gd0.95Pr0.05Ba2Cu2.94M0.06O7−δ. It is found that all the samples, except the Mn co-doped sample, show metallic behavior in the normal state. It is observed that the upper critical field has a correlation with the substituent site of the co-dopant. Thermal conductivity κ(T) of all the samples, except the one with Zn co-doping, exhibits a hump like structure around their respective transition temperatures. A negative sign of the measured thermo-power (S) in Gd-123 indicates that electron-like carriers dominate the heat transport in the pristine sample; whereas a sign reversal in S, as a consequence of the change of dominant carrier upon doping, is observed. Specific heat (CP) measurements show a jump around the transition temperature (TC) for the pristine sample, however, such a jump in CP is strongly suppressed for the doped samples.  相似文献   
995.
One‐pot oxidations of substituted 1‐keto‐1,2,3,4‐tetrahydrocarbazoles ( 1 ) to carbazole‐1,4‐quinones ( 2 ) are efficiently carried out by CAN‐SiO2‐mediated reaction. This generalized protocol was successfully extended to the synthesis of two naturally occurring carbazoloquinones: murrayaquinone A ( 2b ) and koeniginequinone A ( 2g ). A plausible mechanism for this novel reaction involves formation of a 9‐hydroxy‐2,3,4,9‐tetrahydro‐1H‐carbazole‐1‐one followed by rearrangement to 1‐hydroxycarbazole derivatives, which are further oxidized by cerium (IV) to carbazoloquinones. J. Heterocyclic Chem., (2011).  相似文献   
996.
We have conjugated chloroquine, an anti-malarial, antiviral and anti-tumor drug, with thiol-functionalized gold nanoparticles and studied their binding interaction with bovine serum albumin (BSA) protein. Gold nanoparticles have been synthesized using sodium borohydride as reducing agent and 11-mercaptoundecanoic acid as thiol functionalizing ligand in aqueous medium. The formation of gold nanoparticles was confirmed from the characteristic surface plasmon absorption band at 522 nm and transmission electron microscopy revealed the average particle size to be ~7 nm. Chloroquine was conjugated to thiolated gold nanoparticles by using EDC/NHS chemistry and the binding was analyzed using optical density measurement and Fourier transform infrared spectroscopy. The chloroquine-conjugated gold nanoparticles (GNP-Chl) were found to interact efficiently with BSA. Thermodynamic parameters suggest that the binding is driven by both enthalpy and entropy, accompanied with only a minor alteration in protein's structure. Competitive drug binding assay revealed that the GNP-Chl bind at warfarin binding site I in subdomain IIA of BSA and was further supported by Trp212 fluorescence quenching measurements. Unraveling the nature of interactions of GNP-Chl with BSA would pave the way for the design of nanotherapeutic agents with improved functionality, enriching the field of nanomedicine.  相似文献   
997.
An inorganic ion exchanger, quinolinephosphomolybdate has been synthesized and characterized by elemental analysis, infrared (IR) and X-ray diffraction (XRD) spectroscopy. This compound is highly stable toward thermal, chemical and radiation dose. This has been employed in the separation of carrier-free 90Y from its parent 90Sr from an equilibrium mixture. The absorbed daughter was recovered by using 0.0284 mol L−1 ascorbic acid solutions at pH 5.0 as eluting agent.  相似文献   
998.
The formation of spatially localized regions of DNA damage by multiphoton absorption of light is an attractive tool for investigating DNA repair. Although this method has been applied in cells, little information is available about the formation of lesions by multiphoton absorption in the absence of exogenous or endogenous sensitizing agents. Therefore, we have investigated DNA damage induced in vitro by direct two-photon absorption of frequency-doubled femtosecond pulses from a Ti:sapphire laser. We first developed a quantitative polymerase chain reaction assay to measure DNA damage, and determined that the quantum yield of lesions formed by one-photon absorption of 254 nm light is 7.86×10(-4). We then measured the yield of lesions resulting from exposure to the visible femtosecond laser pulses, which exhibited a quadratic intensity dependence. The two-photon absorption cross section of DNA has a value (per nucleotide) of 2.6 GM at 425 nm, 2.4 GM at 450 nm, and 1.9 GM at 475 nm. A comparison of these in vitro results to several in vivo studies of multiphoton photodamage indicates that the onset of DNA damage occurs at lower intensities in vivo; we suggest possible explanations for this discrepancy.  相似文献   
999.
C-reactive protein (CRP) is a highly conserved plasma protein belonging to pentraxins, a superfamily which has significant proinflammatory role. Therefore, CRP can be a good target for drug discovery to prevent disease pathogenesis, especially cardioprotection in acute myocardial infarction and neuroprotection in stroke. Hence, the knowledge of the structure of CRP is very important. In this paper, we have demonstrated three-dimensional structure, conserved domains, and surface structure of human CRP with the help of bioinformatics analysis. We have also depicted that evolutionary relationship of CRP exists among the different species. Simultaneously, WebLogo has been generated to know the more conserved part of this medically important protein.  相似文献   
1000.
Herein we report how de novo designed peptides can be used to investigate whether the position of a metal site along a linear sequence that folds into a three-stranded α-helical coiled coil defines the physical properties of Cd(II) ions in either CdS(3) or CdS(3)O (O-being an exogenous water molecule) coordination environments. Peptides are presented that bind Cd(II) into two identical coordination sites that are located at different topological positions at the interior of these constructs. The peptide GRANDL16PenL19IL23PenL26I binds two Cd(II) as trigonal planar 3-coordinate CdS(3) structures whereas GRANDL12AL16CL26AL30C sequesters two Cd(II) as pseudotetrahedral 4-coordinate CdS(3)O structures. We demonstrate how for the first peptide, having a more rigid structure, the location of the identical binding sites along the linear sequence does not affect the physical properties of the two bound Cd(II). However, the sites are not completely independent as Cd(II) bound to one of the sites ((113)Cd NMR chemical shift of 681 ppm) is perturbed by the metalation state (apo or [Cd(pep)(Hpep)(2)](+) or [Cd(pep)(3)](-)) of the second center ((113)Cd NMR chemical shift of 686 ppm). GRANDL12AL16CL26AL30C shows a completely different behavior. The physical properties of the two bound Cd(II) ions indeed depend on the position of the metal center, having pK(a2) values for the equilibrium [Cd(pep)(Hpep)(2)](+) → [Cd(pep)(3)](-) + 2H(+) (corresponding to deprotonation and coordination of cysteine thiols) that range from 9.9 to 13.9. In addition, the L26AL30C site shows dynamic behavior, which is not observed for the L12AL16C site. These results indicate that for these systems one cannot simply assign a "4-coordinate structure" and assume certain physical properties for that site since important factors such as packing of the adjacent Leu, size of the intended cavity (endo vs exo) and location of the metal site play crucial roles in determining the final properties of the bound Cd(II).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号