首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   2篇
化学   73篇
力学   5篇
数学   1篇
物理学   32篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   8篇
  2010年   7篇
  2009年   2篇
  2008年   4篇
  2007年   11篇
  2006年   10篇
  2005年   4篇
  2004年   9篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  1996年   1篇
  1995年   1篇
  1993年   7篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   3篇
  1985年   3篇
  1981年   1篇
  1977年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
61.
Ketones and imines bearing a 2-(trifluoromethyl)allylic moiety successfully underwent nucleophilic 5-endo-trig cyclization via their metal enolates and enamides. O- or N-Cyclization proceeded exclusively in each case to afford the corresponding five-membered heterocycles with both exo-difluoromethylene and exo-alkylidene units. On treatment with potassium hexamethyldisilazide (KHMDS) or lithium diisopropylamide (LDA), 2-(trifluoromethyl)allylic ketones or imines provided the corresponding tetrahydrofurans or pyrrolidines bearing a Z-alkylidene group with perfect or substantial stereoselectivity, respectively.  相似文献   
62.
The infrared absorption band of decoupled OD stretching vibration (4 mol% HOD in 20-monolayer H 2O) of amorphous solid water is red-shifted and sharpened at around 160 K because of spontaneous nucleation. The crystal grows in a fluidized liquid that forms droplets on a Ni(111) substrate. The shape change and red-shift of a coupled OH band during crystallization are elucidated by a Mie particle scattering model, indicating that nanometer-size droplets are formed preferentially. The spontaneous nucleation at 160 K is bypassed when amorphous solid water is deposited on a crystallized water film; the crystals grow around nuclei at ca. 150 K, resulting in larger crystal grains that do not cause Mie scattering. However, the crystal grains behave like viscous droplets because their morphology changes continuously after the completion of crystallization. The coexisting liquid-like water is indistinguishable from cubic ice in local structure. This behavior resembles that of a quasiliquid formed during premelting.  相似文献   
63.
Mobility of molecules in confined geometry has been studied extensively, but the origins of finite size effects on reduction of the glass transition temperature, T(g), are controversial especially for supported thin films. We investigate uptake of probe molecules in vapor-deposited thin films of cumene, 3-methylpentane, and heavy water using secondary ion mass spectrometry and discuss roles of individual molecular motion during structural relaxation and glass-liquid transition. The surface mobility is found to be enhanced for low-density glasses in the sub-T(g) region because of the diffusion of molecules on pore walls, resulting in densification of a film via pore collapse. Even for high-density glasses without pores, self-diffusion commences prior to the film morphology change at T(g), which is thought to be related to decoupling between translational diffusivity and viscosity. The diffusivity of deeply supercooled liquid tends to be enhanced when it is confined in pores of amorphous solid water. The diffusivity of molecules is further enhanced at temperatures higher than 1.2-1.3 T(g) irrespective of the confinement.  相似文献   
64.
Interactions of acetone with the silicon surfaces terminated with hydrogen, hydroxyl, and perfluorocarbon are investigated; results are compared to those on amorphous solid water (ASW) to gain insights into the roles of hydrogen bonds in surface diffusion and hydration of acetone adspecies. The surface mobility of acetone occurs at ~60 K irrespective of the surface functional groups. Cooperative diffusion of adspecies results in a 2D liquid phase on the H- and perfluorocarbon-terminated surfaces, whereas cooperativity tends to be quenched via hydrogen bonding on the OH-terminated surface, thereby forming residues that diffuse slowly on the surface after evaporation of the physisorbed species (i.e., 2D liquid). The interaction of acetone adspecies on the non-porous ASW surface resembles that on the OH-terminated Si surface, but the acetone molecules tend to be hydrated on the porous ASW film, as evidenced by their desorption during the glass-liquid transition and crystallization of water. The roles of micropores in hydration of acetone molecules are discussed from comparison with the results using mesoporous Si substrates.  相似文献   
65.
The ionization and fragmentation of C(60) fullerenes were investigated using matrix films covered with C(60) molecules and bombarded with 1.5-KeV He(+) ions. C(+), C(60)(+), and C(60)(++) ions were sputtered from the C(60) molecules that were physisorbed on Ar and Xe matrix films, whereas the sputtering of C(60) on the O(2) and C(8)F(18) matrix films induced an additional emission of ion adducts, such as (OC(60))(+) and (FC(60))(+), as well as the fragment ions, C(60-2n)(+) (n = 1-10). Very few ions were sputtered from the C(60) molecules that were adsorbed on the H(2)O matrix film and the Ni(111) substrate. The ions are thought to be created at the surface when C (C(60)) collides with the Ar, Xe, O, and F species via the electron-promotion mechanism, and the formation of quasi-molecules is manifested from the emission of the ion adducts. The fragmentation occurs during the interaction with the reactive species at the surface, and the delayed ionization/fragmentation of the internally excited C(60) molecules in the gas phase has negligible contribution in the present experiment. The matrix effect arises from the suppressed neutralization of the C(60)(+) ion because of the localization of a valence hole. The C(60)(+) ion undergoes neutralization on the H(2)O film because the hydrogen bond has some covalent character.  相似文献   
66.
Acid-catalyzed reactions of epoxides 2 with homoallylic alcohol γ-adducts, 1 [Me2C(OH)CHRCHCH2], afford homoallylic alcohol α-adducts 3-5 via allyl-transfer reaction, sometimes being more effective than those using the corresponding aldehydes.  相似文献   
67.
A mathematical model of the human cardiovascular system in conjunction with an accurate lumped model for a stenosis can provide better insights into the pressure wave propagation at pathological conditions. In this study, a theoretical relation between pressure drop and flow rate based on Lorentz’s reciprocal theorem is derived, which offers an identity to describe the relevance of the geometry and the convective momentum transport to the drag force. A voxelbased simulator V-FLOW VOF3 D, where the vessel geometry is expressed by using volume of fluid(VOF) functions, is employed to find the flow distribution in an idealized stenosis vessel and the identity was validated numerically. It is revealed from the correlation that the pressure drop of NS flow in a stenosis vessel can be decomposed into a linear term caused by Stokes flow with the same boundary conditions, and two nonlinear terms. Furthermore, the linear term for the pressure drop of Stokes flow can be summarized as a correlation by using a modified equation of lubrication theory, which gives favorable results compared to the numerical ones. The contribution of the nonlinear terms to the pressure drop was analyzed numerically, and it is found that geometric shape and momentum transport are the primary factors for the enhancement of drag force. This work paves a way to simulate the blood flow and pressure propagation under different stenosis conditions by using 1D mathematical model.  相似文献   
68.
69.
The diffusion of molecules in amorphous water and methanol films has been investigated on the basis of time-of-flight secondary ion mass spectrometry as a function of temperature. The glass-liquid transition of the amorphous water film occurs at 130-145 K as confirmed from the surface segregation of embedded methanol molecules. The morphology of the pure amorphous water film changes drastically at 160 K as a consequence of dewetting induced by the surface tension and the strongly decreased viscosity of the film. The morphology of the amorphous methanol film changes at 115 K following the self-diffusion onset at 80 K. The binary films of water and heavy methanol are intermixed completely at 136 K as evidenced by the occurrence of the H/D exchange.  相似文献   
70.
The development of systems for photocatalytic CO2 reduction with water as a reductant and solar light as an energy source is one of the most important milestones on the way to artificial photosynthesis. Although such reduction can be performed using dye-sensitized molecular photocathodes comprising metal complexes as redox photosensitizers and catalyst units fixed on a p-type semiconductor electrode, the performance of the corresponding photoelectrochemical cells remains low, e.g., their highest incident photon-to-current conversion efficiency (IPCE) equals 1.2%. Herein, we report a novel dye-sensitized molecular photocathode for photocatalytic CO2 reduction in water featuring a polypyrrole layer, [Ru(diimine)3]2+ as a redox photosensitizer unit, and Ru(diimine)(CO)2Cl2 as the catalyst unit and reveal that the incorporation of the polypyrrole network significantly improves reactivity and durability relative to those of previously reported dye-sensitized molecular photocathodes. The irradiation of the novel photocathode with visible light under low applied bias stably induces the photocatalytic reduction of CO2 to CO and HCOOH with high faradaic efficiency and selectivity (even in aqueous solution), and the highest IPCE is determined as 4.7%. The novel photocathode is coupled with n-type semiconductor photoanodes (CoOx/BiVO4 and RhOx/TaON) to construct full cells that photocatalytically reduce CO2 using water as the reductant upon visible light irradiation as the only energy input at zero bias. The artificial Z-scheme photoelectrochemical cell with the dye-sensitized molecular photocathode achieves the highest energy conversion efficiency of 8.3 × 10−2% under the irradiation of both electrodes with visible light, while a solar to chemical conversion efficiency of 4.2 × 10−2% is achieved for a tandem-type cell using a solar light simulator (AM 1.5, 100 mW cm−2).

A novel dye-sensitized molecular photocathode with polypyrrole networks exhibits high efficiency and durability for photocatalytic CO2 reduction by using water as reductant and visible light as energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号