首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   10篇
化学   211篇
晶体学   1篇
力学   10篇
数学   13篇
物理学   39篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   6篇
  2020年   3篇
  2019年   2篇
  2018年   9篇
  2017年   2篇
  2016年   5篇
  2015年   7篇
  2014年   11篇
  2013年   12篇
  2012年   20篇
  2011年   23篇
  2010年   6篇
  2009年   13篇
  2008年   23篇
  2007年   17篇
  2006年   17篇
  2005年   9篇
  2004年   18篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1997年   7篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有274条查询结果,搜索用时 15 毫秒
81.
Recent studies suggest that aliphatic β‐nitro alcohols may represent a useful class of compounds for use as in vivo therapeutic corneoscleral cross‐linking agents with higher order nitroalcohols (HONAs) showing enhanced efficacy over the mono‐nitroalcohols. The current study was undertaken in order to evaluate the chemical stability of these compounds during storage conditions. Two mono‐nitroalcohols (2‐nitroethanol=2ne and 2‐nitro‐1‐propanol=2nprop) and two HONAs, a nitrodiol (2‐methyl‐2‐nitro‐1,3‐propanediol=MNPD), and a nitrotriol (2‐hydroxymethyl‐2‐nitro‐1,3‐propanediol=HNPD) were monitored for chemical stability by 1H‐NMR for up to 7 months. Each compound was studied at two concentrations (1% and 10%) either in unbuffered H2O or 0.2 m NaH2PO4/Na2HPO4 (pH=5), and at 0°C and room temperature (RT) for a total of eight conditions for each compound. The 1H‐NMR spectra for the starting material were compared to subsequent spectra. Under all four of the conditions studied, both the nitrodiol (MNPD) and nitrotriol (HNPD) were stable for the duration of 7 months. 2nprop became unstable under all conditions at 3 months. 2ne was the most unstable of all the compounds tested. HONAs exhibit excellent chemical stability under long‐term storage conditions. In contrast, the nitromonols tested are significantly less stable. These findings are relevant to the translation of this technology into clinical use.  相似文献   
82.
One‐electron reduction of mononuclear nonheme iron(III) hydroperoxo (FeIII OOH) and iron(III) alkylperoxo (FeIII OOR) complexes by ferrocene (Fc) derivatives resulted in the formation of the corresponding iron(IV) oxo complexes. The conversion rates were dependent on the concentration and oxidation potentials of the electron donors, thus indicating that the reduction of the iron(III) (hydro/alkyl)peroxo complexes to their one‐electron reduced iron(II) (hydro/alkyl)peroxo species is the rate‐determining step, followed by the heterolytic O O bond cleavage of the putative iron(II) (hydro/alkyl)peroxo species to give the iron(IV) oxo complexes. Product analysis supported the heterolytic O O bond‐cleavage mechanism. The present results provide the first example showing the one‐electron reduction of iron(III) (hydro/alkyl)peroxo complexes and the heterolytic O O bond cleavage of iron(II) (hydro/alkyl)peroxo species to form iron(IV) oxo intermediates which occur in nonheme iron enzymatic and Fenton reactions.  相似文献   
83.
Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three-dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with T2 ~ 10 to 20 μs without the use of spin echo, and highly stable, showing no evidence for 1/f critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few 10(-4), approaching the error correction threshold.  相似文献   
84.
DNA exhibits a remarkable mechanical transition where its extension increases by 70% at 65 pN. Notwithstanding more than a decade of experimental and theoretical studies, there remains a significant debate on the nature of overstretched DNA. We developed a topologically closed but rotationally unconstrained DNA assay, which contains no nicks or free ends. DNA in this assay exhibited the canonical overstretching transition at 65 pN but without hysteresis upon retraction (v(stage) = 5 μm/s). Introduction of a controlled nick led to hysteresis in the force-extension curve. Moreover, the degree of hysteresis increased with the number of nicks. Hence, the generation of single-stranded DNA from free ends or nicks is not an obligatory step in overstretching DNA, but rather a consequence.  相似文献   
85.
The catalytic performance of a perovskite-type lanthanum ferrite LaFeO3 to remove arsenic from water has been investigates for the first time. LaFeO3 was prepared by citrate auto-combustion of dry gel obtained from a solution of the corresponding nitrates poured into citric acid solution. Kinetic studies were performed in the dark with As(V) and in the dark and under UV-C irradiation at pH 6–7 with As(III) (both 1 mg L−1), and As : Fe molar ratios (MR) of 1 : 10 and 1 : 100 using the LaFeO3 catalyst. As(V) was removed from solution after 60 min in the dark in 7 % and in 47 % for MR=1 : 10 and MR=1 : 100, respectively, indicating the importance of the amount of the iron material on the removal. Oxidation of As(III) in the dark was negligible after 60 min in contact with the solid sample, but complete removal of As(III) was observed within 60 min of irradiation at 254 nm, due to As(III) photooxidation to As(V) and to As(III) sorption to a minor extent. Morphological and microstructural studies of the catalyst complement the catalytic testing. This work demonstrates that LaFeO3 can be used for the removal of As(III) from highly arsenic contaminated water.  相似文献   
86.
Ko JW  Min KS  Suh MP 《Inorganic chemistry》2002,41(8):2151-2157
A 2-D metal-organic open framework having 1-D channels, [Cu(C(10)H(26)N(6))](3)[C(6)H(3)(COO)(3)](2).18H(2)O (1), was constructed by the self-assembly of the Cu(II) complex of hexaazamacrocycle A (A = C(10)H(26)N(6)) with sodium 1,3,5-benzenetricarboxylate (BTC(3)(-)) in DMSO-H(2)O solution. 1 crystallizes in the trigonal space group P with a = b = 17.705(1) A, c = 6.940(1) A, alpha = beta = 90 degrees, gamma = 120 degrees, V = 1884.0(3) A(3), Z = 1, and rho(calcd) = 1.428 g cm(-3). The X-ray crystal structure of 1 indicates that each Cu(II) macrocyclic unit binds two BTC(3-) ions in a trans position and each BTC(3-) ion coordinates three Cu(II) macrocyclic complexes to form 2-D coordination polymer layers with honeycomb cavities (effective size 8.1 A), and the layers are packed to generate 1-D channels perpendicularly to the 2-D layers. Solid 1 binds guest molecules such as MeOH, EtOH, and PhOH with different binding constant and capacity. By the treatment of 1 with aqueous solution of phenol, a hybrid solid [Cu(C(10)H(26)N(6))](3)[C(6)H(3)(COO)(3)](2).9PhOH.6H(2)O (2) was assembled. 2 crystallizes in the trigonal R3 space group with a = b = 20.461(1) A, c = 24.159(1) A, alpha = beta = 90 degrees, gamma = 120 degrees, V = 8759.2(7) A(3), Z = 3, and rho(calcd) = 1.280 g cm(-3). In 2, highly ordered 2-D noncovalent phenol layers are formed by the edge-to-face pi-pi interactions between the phenol molecules and are alternately packed with the coordination polymer layers in the crystal lattice.  相似文献   
87.
A convenient method for the confined incorporation of highly active bimetallic PdCo nanocatalysts within a hollow and porous metal–organic framework (MOF) support is presented. Several chemical conversions occur simultaneously during the one‐step low temperature pyrolysis of well‐designed polystyrene@ZIF‐67/Pd2+ core–shell microspheres, where ZIF (zeolitic imidazolate framework) is a subclass of MOF: the polystyrene core is removed, resulting in a beneficial hollow and porous ZIF support; the ZIF‐67 shell acts as a well‐defined porous support and as a felicitous Co2+ supplier for metal nanoparticle formation; and Pd2+ and Co2+ are reduced to form catalytically active bimetallic PdCo nanoparticles in the well‐defined micropores, inducing the confined growth of PdCo nanoparticles with excellent dispersity.  相似文献   
88.
The water-soluble, Lithol rubine B, dye was encapsulated into silica microspheres matrices. Encapsulation has been carried out by sol-gel process of W/O microemulsions formed from sodium silicate and dye aqueous solution in cyclohexane medium. The average particle size could be tailored from 1–10 m, depending on the processing parameter such as homogenizing speed in the formation of W/O emulsion, the weight ratio of water to oil, and concentration of sodium silicate solution, etc. The pore size of dye-doped silica microspheres was measured by nitrogen adsorption-desorption isotherms. The leaching behavior of dye entrapped in silica matrices was investigated by UV/VIS and UV diffuse reflectance spectroscopy for the extract and solid powders after immersion for 24 h in water. The doping of GPTS (3-glycidoxypropyltrimethoxysilane) in sodium silicate and dye mixture solution greatly enhanced the stability against leaching of the dye. It was ascribed that GPTS serves simultaneously as an intermediate for the chemical bonding between the dye and silica, and as an agent for the formation of hybrid sol responsible for the shrinkage of pore size.  相似文献   
89.
Variable-temperature (2)H MAS NMR spectroscopy was used to investigate the local environments and mobility of deuterons in the manganese dioxide tunnel structures. Five systems were investigated: electrolytic manganese dioxide (EMD), the model compounds groutite and manganite, and deuterium intercalated ramsdellite and pyrolusite. Ruetschi deuterons, located in the cation vacancy sites in EMD, were detected by NMR and give rise to a resonance at 150 ppm at room temperature. These deuterons are rigid on the (2)H MAS NMR time scale (i.e., the correlation time for motion, tau(c), is >10(-3) s) at room temperature, but start to become mobile above 150 degrees C. No Coleman protons (in the so-called 1 x 1 and 1 x 2 tunnels in EMD) were observed. Much larger (2)H NMR hyperfine shifts of approximately 300 and approximately 415 ppm were observed for the deuterons in the tunnel structures of manganite and groutite, which could be explained by considering the different bonding arrangements for deuterons in the 1 x 1 and 1 x 2 tunnels. The smaller shift of the EMD deuterons was primarily ascribed to the smaller number of manganese ions in the deuterium local coordination sphere. Experiments performed as a function of intercalation level for ramsdellite suggest that the 1 x 1 tunnels are more readily intercalated in highly defective structures. The almost identical shifts seen as a function of intercalation level for deuterons in both 1 x 1 and 1 x 2 tunnels are consistent with the localization of the e(g) electrons near the intercalated deuterium atoms. A Curie-Weiss-like temperature dependence for the hyperfine shifts of EMD and groutite was observed with temperature, but very little change in the shift of the manganite deuterons was observed, consistent with the strong antiferromagnetic correlations that exist above the Néel temperature for this compound. These different temperature dependences could be used to identify manganite-like domains within the sample of groutite, which could not be detected by X-ray diffraction.  相似文献   
90.
Summary: We report a simple method for tuning catalytic property of a metallocene‐based catalyst, Cp2ZrCl2, for ethylene polymerization by the direct adsorption of Cp2ZrCl2 onto multi‐walled carbon nanotubes (MWCNTs). The direct interactions between MWCNTs and the Cp rings of Cp2ZrCl2 controlled the polymerization behaviors, and we could generate polyethylene with an extremely high molecular weight ( = 1 000 000) at 30 °C and under 1 atm of ethylene gas.

Preparation of Cp2ZrCl2‐MWCNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号