Single drop microextraction (SDME) can be in-line coupled with capillary electrophoresis by attaching a drop to the tip of a capillary. With a 2-layer drop comprised of an aqueous basic acceptor phase covered with a thin organic layer, acidic analytes in an aqueous acidic donor phase can be extracted into the organic layer and then back-extracted into the acceptor phase. However, preconcentration of amino acids and peptides by SDME is difficult since their zwitterionic properties prevent them from being partitioned in the middle organic phase. When amino acids were derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), amino acids without a charged side chain were converted to carboxylic acids. In the acidic donor phase, those NBD-amino acids were predominantly neutral and they were successfully concentrated into the basic acceptor phase. In the meantime, amino acids with a charged side chain after NBD-F derivatization were not concentrated via SDME. With this selective SDME, we were able to extract acidic and neutral amino acids obtaining several hundred-fold enrichments within 5 min at 25 °C, while leaving basic amino acids—Arg, Lys, and His—in the acidic donor phase. Furthermore, detection sensitivity was enhanced by employing laser-induced fluorescence detection. We then applied this technique to the selective concentration of peptides. 相似文献
Injectable delivery vehicles in tissue engineering are often required for successful tissue formation in a minimally invasive manner. Shear‐reversibly crosslinked hydrogels, which can recover gel structures from shear‐induced breakdown, can be useful as an injectable, because gels can flow as a liquid when injected but re‐gel once placed in the body. In this study, injectable and shear‐reversible alginate hydrogels were prepared by combination crosslinking using cell‐crosslinking and ionic crosslinking techniques. The addition of a small quantity of calcium ions decreased the number of cells that were required to form cell‐crosslinked hydrogels without changing the shear reversibility of the system. The physical properties and gelation behavior of the gels were dependent on the concentration of both the cells and the calcium ions. We found that gels crosslinked by combination crosslinking methods were effective to engineer cartilage tissues in vivo. Using both ionic and cell‐crosslinking methods to control the gelation behavior may allow the design of novel injectable systems that can be used to deliver cells and other therapeutics for minimally invasive therapy, including tissue engineering.
A series of EuMgxGa4?x compounds were synthesized using high temperature, solid‐state methods and characterized by both powder and single crystal X‐ray diffraction. All compounds crystallize in the tetragonal BaAl4‐type structure (space group I4/mmm, Z = 2, Pearson symbol tI10) with full occupancy of Ga at the apical atom (4e) site and mixed‐occupancy of Mg and Ga at the basal atom (4d) site. Six compositions were analyzed by single crystal X‐ray diffraction: EuMg0.21(1)Ga3.79(1), EuMg0.91(1)Ga3.09(1), EuMg1.22(1)Ga2.78(1), EuMg1.78(1)Ga2.22(1), EuMg1.84(1)Ga2.16(1), and EuMg1.94(1)Ga2.06(1). As the larger Mg atoms increasingly replace Ga atoms at the basal site in EuMgxGa4?x, the a‐axis lengths at first decrease and then increase, while the c‐axis lengths increase monotonically along the series. The phase width of the BaAl4‐type EuMgxGa4?x series is identified to be 0 ≤ x ≤ 1.94(1), a range which corresponds to 12.06(1)‐14 valence electrons per formula unit, and can be understood by their electronic structures using density of states (DOS) curves calculated by tight‐binding calculations. Mg substitution for Ga at the basal site is consistent with the site preferences for mixed metals on the three‐dimensional framework of the BaAl4‐structure based on both electronegativities and sizes, and provides the rationale for the unusual behavior in lattice parameters. The observed site preference was also rationalized by total electronic energies calculated for two different coloring schemes. 相似文献