首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1100篇
  免费   56篇
  国内免费   6篇
化学   916篇
晶体学   9篇
力学   11篇
数学   119篇
物理学   107篇
  2023年   12篇
  2022年   32篇
  2021年   44篇
  2020年   21篇
  2019年   24篇
  2018年   25篇
  2017年   8篇
  2016年   42篇
  2015年   50篇
  2014年   44篇
  2013年   75篇
  2012年   85篇
  2011年   111篇
  2010年   46篇
  2009年   57篇
  2008年   95篇
  2007年   68篇
  2006年   47篇
  2005年   73篇
  2004年   53篇
  2003年   29篇
  2002年   31篇
  2001年   9篇
  2000年   4篇
  1999年   9篇
  1998年   8篇
  1997年   2篇
  1996年   7篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1162条查询结果,搜索用时 62 毫秒
161.
Until recently, determining the distribution of antioxidants, AOs, between the oil, interfacial and aqueous regions of opaque emulsions has not worked well because the concentrations of AOs in interfacial regions cannot be determined separately from their concentrations in the oil and water phases. However, our novel kinetic method based on the reaction between an arenediazonium ion and vitamin E, or alpha-tocopherol, provides the first good estimates for the two partition constants that describe alpha-tocopherol distribution between the oil/interfacial and water/interfacial regions of tributyrin/Brij 30/water emulsions without physical isolation of any phase. The reaction is monitored by a new derivatization method based on trapping unreacted arenediazonium ion as an azo dye and confirmed by linear sweep voltammetry, LSV. The results by both derivatization and LSV methods are in good agreement and show that alpha-tocopherol distributes strongly in favor of the interfacial region when the oil is tributyrin, e.g., ca. 90% when the surfactant volume fraction is Phi I=0.01. The second-order rate constant for reaction in the interfacial region is also obtained from the results. Our kinetic method provides a robust approach for determining antioxidant distributions in emulsions and should help develop a quantitative interpretation of antioxidant efficiency in emulsions.  相似文献   
162.
The interaction between oxidized (ubiquinone-10) and reduced (ubiquinol-10) coenzyme Q 10 with dimyristoylphosphatidylcholine has been examined by differential scanning microcalorimetry, X-ray diffraction, infrared spectroscopy, and (2)H NMR. Microcalorimetry experiments showed that ubiquinol-10 perturbed considerably more the phase transition of the phospholipids than ubiquinone-10, both forms giving rise to a shoulder of the main transition peak at lower temperatures. Small angle X-ray diffraction showed an increase in d-spacing suggesting a thicker membrane in the presence of both ubiquinone-10 and ubiquinol-10, below the phase transition and a remarkable broadening of the peaks indicating a loss of the repetitive pattern of the lipid multilamellar vesicles. Infrared spectroscopy showed an increase in wavenumbers of the maximum of the CH 2 stretching vibration at temperatures below the phase transition, in the presence of ubiquinol-10, indicating an increase in the proportion of gauche isomers in the gel phase, whereas this effect was smaller for ubiquinone-10. A very small effect was observed at temperatures above the phase transition. (2)H NMR spectroscopy of perdeuterated DMPC showed only modest changes in the spectra of the phospholipids occasioned by the presence of coenzyme Q 10. These small changes were reflected, in the presence of ubiquinol-10, by a decrease in resolution indicating that the interaction between coenzyme Q and phospholipids changed the motion of the lipids. The change was also visible in the first spectral moment (M1), which is related with membrane order, which was slightly decreased at temperatures below the phase transition especially with ubiquinol-10. A slight decrease in M 1 values was also observed above the phase transition but only for ubiquinol-10. These results can be interpreted to indicate that most ubiquinone-10 molecules are localized in the center of the bilayer, but a considerable proportion of ubiquinol-10 molecules may span the bilayer interacting more extensively with the phospholipid acyl chains.  相似文献   
163.
Immobilization of porphyrin complexes into crystalline metal–organic frameworks (MOFs) enables high exposure of porphyrin active sites for CO2 electroreduction. Herein, well-dispersed iron-porphyrin-based MOF (PCN-222(Fe)) on carbon-based electrodes revealed optimal turnover frequencies for CO2 electroreduction to CO at 1 wt.% catalyst loading, beyond which the intrinsic catalyst activity declined due to CO2 mass transport limitations. In situ Raman suggested that PCN-222(Fe) maintained its structure under electrochemical bias, permitting mechanistic investigations. These revealed a stepwise electron transfer-proton transfer mechanism for CO2 electroreduction on PCN-222(Fe) electrodes, which followed a shift from a rate-limiting electron transfer to CO2 mass transfer as the potential increased from −0.6 V to −1.0 V vs. RHE. Our results demonstrate how intrinsic catalytic investigations and in situ spectroscopy are needed to elucidate CO2 electroreduction mechanisms on PCN-222(Fe) MOFs.  相似文献   
164.
IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the (1)H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3-(trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating (13)C NMR chemical shifts in solids to the scales used for high-resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice.  相似文献   
165.
This article presents the structure elucidation of four new compounds, formed during the hemisynthetic preparation of trabectedin, an anti-tumor natural product from Ecteinascidia turbinata. We report herein on the use of UV, MS and NMR spectroscopic data along with (1)H and (13)C spectral assignments obtained by means of 1D and 2D homo- and heteronuclear NMR techniques.  相似文献   
166.
We have successfully controlled the size and shape of isotropic and anisotropic gold nanocrystals through a one-step reaction by using amphiphilic polyethylene oxide-polystyrene oxide block copolymers as both reductant and stabilizing agents in water solution. Spherical or quasispherical nanoparticles were obtained at room temperature with tunable mean sizes and polydispersities depending on reaction conditions, that is, on copolymer block length, and copolymer and gold salt concentrations. By moderate increases of reaction temperature up to 65 degrees C, progressive formation of single-crystalline gold nanoplates in good yields takes place (up to 70%) without the necessity of additional reactants or growing solutions. These nanoplates are characterized by lateral mean sizes between 0.1-1.2 microm depending on copolymer concentration and reaction temperature, with mainly truncated or rounded triangular shapes with {111} planes as two basal surfaces. This allows us to tune the surface plasmon band of the nanoplates from ca. 850 nm to more than 1100 nm, well inside the near-infrared region (NIR), which enables the use of these type of nanostructures as a very promsing materials in applications such as optical coatings, SERS, and cancer cell hyperthermia. We proposed that the growth of these nanostructures can stem from a decrease in the reaction rate as temperature increases due to an enhanced copolymer hydrophobicity, which gives rise to a structure of interacting micelles formed from the fluid via a percolation transition (known as "soft gel") at elevated temperatures. In this way, reduction becomes slow enough to allow kinetic control of the reaction, and preferential adsorption of the copolymer molecules/micelles on certain crystallographic planes can favor the growth of certain nanocrystal facets to give the final structure. This alternative water-based system provides a more convenient and environmentally benign route to the synthesis of shape-controlled noble-metal nanocrystals in high yield because it does not involve toxic organic solvents or reagents and serves as a bridge between two frontline discipline: the block copolymeric science and anisotropic nanoparticles.  相似文献   
167.
The sol–gel derived chemically combined organic–inorganic nanocomposites were synthesized from poly(etheramide) and tetraethoxysilane. Reaction of a mixture of 4-aminophenyl ether and 1,3-phenyldiamine with terephthaloyl chloride (TPC) in dimethylacetamide (DMAc) produced the amide chains. These chains were modified with carbonyl chloride end groups using a slight excess of diacid chloride and were then reacted with aminophenyl trimethoxysilane (APTMOS), where the amine group reacted with carbonyl chloride end groups. Hydrolysis/condensation of tetraethoxysilane (TEOS) and alkoxy groups present in APTMOS developed bonding between the polyamide chains and inorganic silica network generated in situ. By changing the relative proportions of the polymer solution and the amount of TEOS, the composition of hybrid films was varied. Thin hybrid films with various concentrations of silica network obtained after evaporation of the solvent were subjected to mechanical, dynamic mechanical thermal and morphological measurements. The results indicate a gradual increase in the modulus (3.84 GPa) and tensile strength (121 MPa) up to 15-wt.% silica relative to the pure polyamide. The elongation at break point and toughness gradually decrease with addition of silica content. These hybrids were found to be thermally stable up to a temperature of 500 °C. The weight retained above 800 °C was roughly proportional to amount of silica in the matrix. The glass transition temperature and the storage moduli increased with increasing silica concentration. The maximum increase in the T g value (358 °C) was observed with 15-wt.% silica. Scanning electron micrographs indicated the uniform distribution of silica in the composites with an average particle size ranging from 9 to 47 nm.  相似文献   
168.
The reactivity of the 4-amino-5H-1,2-oxathiole-2,2-dioxide (or beta-amino-gamma-sultone) heterocyclic system has scarcely been studied. Here we describe the reactivity of this system towards electrophiles and amines on readily available model substrates differently substituted at the C-5 position. A variety of C-electrophiles, carbonyl electrophiles (such as acyl chlorides, isocyanates, or aldehydes) and halogen or nitrogen electrophiles have been explored. Both the C-3 and 4-amino positions of the beta-amino-gamma-sultone system are able to undergo electrophilic reactions, and the reaction products depend on the electrophile used and on the reaction conditions. On the other hand, nucleophilic attack of amines occurs at the C-4 position of the beta-amino-gamma-sultone system only in spiranic substrates bearing alicyclic substituents at the C-5 position. A comparative computational study between spiranic and non-spiranic substrates suggests that conformational changes, undergone on intermediate compounds, account for the observed reactivity differences. Moreover, these conformational changes seem to bring about an increase of electron density on the N-4 and C-3 atoms of the enaminic system, and a possible enhancement in the reactivity of spiranic substrates towards electrophiles in the presence of amines. Experimental data consistent with this predicted enhanced reactivity is also presented.  相似文献   
169.
From the leaves of Globularia alypum, three new phenylethyl glycosides, namely galypumosides A (=2‐(3,4‐dihydroxyphenyl)ethyl Oα‐rhamnopyranosyl‐(1→3)‐4‐O‐[(E)‐caffeoyl]‐6‐O‐[(E)‐p‐coumaroyl]‐β‐glucopyranoside; 1 ), B (=2‐(3,4‐dihydroxyphenyl)ethyl Oα‐rhamnopyranosyl‐(1→3)‐4‐O‐[(E)‐caffeoyl]‐6‐O‐[(E)‐feruloyl]‐β‐glucopyranoside; 2 ), and C (=2‐(3,4‐dihydroxyphenyl)ethyl Oα‐rhamnopyranosyl‐(1→3)‐4‐O‐[(E)‐caffeoyl]‐6‐O‐menthiafoloyl‐β‐glucopyranoside; 3 ), were isolated, together with two known phenylethyl glycosides, calceolarioside A and verbascoside. Eight iridoid glucosides, catalpol, globularicisin, globularin, globularidin, globularinin, globularimin, lytanthosalin, and alpinoside, a flavon glycoside, 6‐hydroxyluteolin 7‐O‐sophoroside, a lignan glycoside, syringaresinol 4′‐Oβ‐glucopyranoside, and a phenylpropanoid glycoside, syringin, were also obtained and characterized. The structures of the isolates were elucidated on the basis of 1D‐ and 2D‐NMR experiments as well as HR‐MALDI‐MS.  相似文献   
170.
ATP, the molecule used by living organisms to supply energy to many different metabolic processes, is synthesized mostly by the ATPase synthase using a proton or sodium gradient generated across a lipid membrane. We present evidence that a modified electrode surface integrating a NiFeSe hydrogenase and a F1F0‐ATPase in a lipid membrane can couple the electrochemical oxidation of H2 to the synthesis of ATP. This electrode‐assisted conversion of H2 gas into ATP could serve to generate this biochemical fuel locally when required in biomedical devices or enzymatic synthesis of valuable products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号