首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1543篇
  免费   64篇
  国内免费   6篇
化学   1213篇
晶体学   14篇
力学   47篇
数学   153篇
物理学   186篇
  2023年   16篇
  2022年   43篇
  2021年   50篇
  2020年   29篇
  2019年   30篇
  2018年   30篇
  2017年   16篇
  2016年   48篇
  2015年   60篇
  2014年   58篇
  2013年   88篇
  2012年   116篇
  2011年   148篇
  2010年   67篇
  2009年   76篇
  2008年   130篇
  2007年   105篇
  2006年   69篇
  2005年   96篇
  2004年   64篇
  2003年   41篇
  2002年   53篇
  2001年   20篇
  2000年   18篇
  1999年   17篇
  1998年   15篇
  1997年   5篇
  1996年   13篇
  1995年   8篇
  1994年   10篇
  1993年   6篇
  1992年   4篇
  1991年   5篇
  1990年   8篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   7篇
  1980年   2篇
  1978年   2篇
  1976年   4篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1884年   2篇
  1876年   2篇
排序方式: 共有1613条查询结果,搜索用时 660 毫秒
51.
Nowadays, there is a growing availability of biodegradable industrial materials intended to food contact applications whose service life behavior needs to be further investigated. This article is focused on the degradation of two materials based on polylactic acid. The correlation between the rate of degradation and the amount of trapped degradation products was investigated applying three characterization techniques in parallel, namely rheology, high‐performance liquid chromatography (HPLC), and matrix‐assisted laser desorption/ionization (MALDI). The rate of degradation was studied through the evaluation of their rheological properties and calculation of the number of average molecular weights, and weight‐average molecular weights. Water‐soluble oligomers and lactic acid were quantified by HPLC‐ultraviolet. Changes in cyclic and linear oligomers were monitored by MALDI‐time‐of‐flight mass spectrometry. Specimens of 4‐mm thickness of each biopolymer were subjected to hydrolysis in deionized water up to 6 months at two temperatures, simulating service conditions of food packaging. The diminution in viscosity and consequently in molecular weight distribution (20–60%) showed the degradation of the molecular structure of both polylactic acids. The chain scission was followed through the increasing values of lactic acid and hydrolyzed oligomers (twofold to eightfold), and the predominant signal of the linear oligomers over the cyclic ones with aging. Rheology, HPLC, and MALDI showed to be complementary tools to better understand the changes in the molecular structure. The obtained results showed the necessity of adding suitable stabilizers for each particular food packaging application. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
52.
53.
54.

Thermal, thermomechanical, and caloric properties of commercial orthodontic wires (produced by Natural Orthodontics Corp., USA) with cylindrical and rectangular geometry were studied. Depending on the applied forces, there were identified the range of elasticity, the elasticity–viscoelasticity coexistence domain and the domain in which a maximum force of 18 N is applied, for the orthodontic wires. When increasing the thickness of orthodontic wires, deformation decreases. The Controlled Force Module, in the tension mode, was used for the determination of the orthodontic wires elongation at application of the stretching forces from 0 to 13 N, at 35 °C, maintaining each static force value for 3 min. The increase in the cross-sectional area of the orthodontic wires disfavors the process of elongation of the sample, at the same applied static force. Using the Multi-Frequency–Strain–Stress modulus, in the tension mode, DMA cyclic heating–cooling measurements were performed. The measured physical quantities for orthodontic wires were Storage Modulus, Loss Modulus, Tanδ and Stiffness, at heating and cooling. Thus, the characteristic temperatures of the phase transitions (As, Af, Ms, Mf), of all the studied orthodontic wires were identified. Also, the values of the elasticity modulus (Young’s Modulus) of the orthodontic wires were calculated at 35 °C. With the DSC Q200 device, using temperature-modulated differential scanning calorimetry method, a multi-step temperature variation program, was applied to a rectangular wire, in three stages (cooling–heating–cooling). Through the interpretation of heat fluxes (reversible, irreversible and total), the phase transitions in the formation of martensite, austenite, but also of the rombohedral phase (R-phase), were identified. Formations of austenite and martensite were also evidenced by the classical DSC method, but the classical DSC method also enabled the R-phase identification. The adherence of some food dyes on the orthodontic wires, as well as the modification of the surface roughness of the orthodontic wire after the deposition of the food dye, was also studied. By magnetic measurements, it was established that the orthodontic wires had paramagnetic properties at room temperature, and nitinol was a mixture of 49.2% austenite and 50.8% martensite.

  相似文献   
55.

Differential scanning calorimetry (DSC), isothermal stress testing–Fourier transform infrared spectroscopy (IST–FTIR), isothermal stress testing–high-performance liquid chromatography, and powder X-ray diffraction (PDRX) were used as screening techniques for assessing the compatibility of tobramycin with some currently employed ophthalmic excipients. In the first phase of the study, DSC was used as a tool to detect any interaction. The absolute value of the difference between the enthalpy of the pure tobramycin melting peak and that of its melting peak in the different analyzed mixtures was chosen as a parameter of the drug–excipient interaction degree. DSC results demonstrated that benzalkonium chloride, monobasic sodium phosphate, boric acid, edetate disodium, sodium metabisulfite, thimerosal, and potassium sorbate interact with tobramycin. Taking into account these results, it could be suggested that some of the changes observed in the IST–FTIR spectra of binary blends of tobramycin and some of the excipients would account for a possible interaction between the mixture component. In this study, PDRX did not provide much information, since only tobramycin–thimerosal interactions could be detected. DSC and IST–FTIR are suitable and simple methods for the detection of potential incompatibilities between active pharmaceutical ingredient (API) and excipients.

  相似文献   
56.
In this paper we introduce a new dominance rule for the two-stage hybrid flow shop problem with dedicated machines. The rule is then used to construct a dominating set. The efficiency of the proposed rule is shown through an analysis of the dominating set cardinality.  相似文献   
57.
58.
Poly[Cu(3-MeOsalpd)] films with good physical, chemical and electrochemical stability may be potentiodynamically electrodeposited with high deposition efficiency from acetonitrile solutions of the monomer. Comparative coulometric assays with the Ni-based analogue show that the metal in the salen motif does play a role in the electronic structure of the polymer, but that the electroactive response is ligand (not metal) based. The dynamics of redox switching are ultimately limited by coupled electron/counter ion diffusion, but this process is sufficiently rapid that it influences the voltammetric response only for thick films (Γ >420?nmol?cm?2) at high scan rates. Redox cycling in monomer-free electrolyte shows a voltammetric signature that responds, via interaction with the pseudo-crown ether receptor sites, to the presence of Li+, K+, Mg2+ and Ba2+ ions in solution. The most prominent change is associated with the first anodic peak in the i-E signature. For each of the metal ions considered, this peak potential responds logarithmically to concentration in a manner that varies with individual complexed cation and film thickness and to an extent greater than predicted by the Nernst equation. The film characteristics offer some analytical promise, including a trade-off between sensitivity and dynamic range and signal amplification, possibly due to supramolecular effects.  相似文献   
59.
60.
Asymmetric 1,2-additions of cyanide yield enantioenriched cyanohydrins as versatile chiral building blocks. Next to HCN, volatile organic cyanide sources are usually used. Among them, cyanoformates are more attractive on technical scale than TMSCN for cost reasons, but catalytic productivity is usually lower. Here, the development of a new strategy for cyanations is described, in which this activity disadvantage is overcome. A Lewis acidic Al center cooperates with an aprotic onium moiety within a remarkably robust bifunctional Al–F–salen complex. This allowed for unprecedented turnover numbers of up to 104. DFT studies suggest an unexpected unique trimolecular pathway in which the ammonium bound cyanide attacks the aldehyde, which itself is activated by the carbonyl group of the cyanoformate binding to the Al center. In addition, a novel practical carboxycyanation method was developed that makes use of KCN as the sole cyanide source. The use of a pyrocarbonate as carboxylating reagent provided the best results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号