首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1206篇
  免费   61篇
  国内免费   6篇
化学   988篇
晶体学   9篇
力学   14篇
数学   135篇
物理学   127篇
  2023年   14篇
  2022年   50篇
  2021年   47篇
  2020年   22篇
  2019年   28篇
  2018年   29篇
  2017年   11篇
  2016年   46篇
  2015年   50篇
  2014年   43篇
  2013年   81篇
  2012年   90篇
  2011年   119篇
  2010年   55篇
  2009年   63篇
  2008年   99篇
  2007年   72篇
  2006年   54篇
  2005年   77篇
  2004年   54篇
  2003年   30篇
  2002年   33篇
  2001年   13篇
  2000年   4篇
  1999年   9篇
  1998年   10篇
  1997年   3篇
  1996年   8篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   6篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有1273条查询结果,搜索用时 15 毫秒
161.
In aqueous hydrobromic medium, Na[AuCl4] reacts with 1,3-dimethyllumazine (1,3-dimethyl-pteridine-2,4(1H,3H)-dione, DLM) or 1,3,6,7-tetramethyllumazine (DLMD) to give three adducts with simplified formulas Na[AuBr4](DLMD), Na[AuBr4](DLM), and Na[AuBr4](DLM)2. These compounds have been characterized by means of analytical techniques, and IR and NMR spectroscopies. Single-crystal x-ray diffraction studies have been made on the Na[AuBr4](DLM)2 compound. The crystals belong to the orthorhombic Pbca space group, with a = 15.249(1), b = 15.238(2), c = 21.563(2) Å, Z = 8, and R = 0.053. The structure consists of planar [AuBr4] anions and Na+ cations weakly linked to two crystallographically independent DLM molecules. The Na+ cation interacts weakly with four oxygen and one nitrogen atoms from four different pteridine molecules, its environment may be described as a very distorted square pyramid.  相似文献   
162.
Nieto S  Lynch VM  Anslyn EV  Kim H  Chin J 《Organic letters》2008,10(22):5167-5170
Racemic-metal complexes were used to determine identity, enantiomeric excess, and concentration of chiral diamines using metal-to-ligand charge transfer bands in circular dichroism spectroscopy. It takes under just 2 min per sample to determine [G]t and %R with tolerable errors (19% and 4%, respectively). The simplicity of the achiral receptors employed confers to this technique great potential for high-throughput screening.  相似文献   
163.
A comparison of kinetic models for dispersion polymerization of MMA and styrene in supercritical CO2 is presented. The limiting case of solution polymerization, as a simplified case, was also addressed. Calculation of the partition of components between the continuous and dispersed phases was emphasized. Experimental data for the solution and dispersion polymerizations of styrene and MMA, using different types of stabilizers, were used to guide the study. Although all the models analyzed can be considered as “adequate” in representing the behavior of the system, some of their strengths and drawbacks have been highlighted.

  相似文献   

164.
X-ray absorption spectroscopic measurements have been used to compare the electronic structures of swift heavy ions (100 MeV Si ions) irradiated and pristine Ni-Al nanocrystalline films. Results from X-ray diffraction (XRD), X-ray absorption near-edge structure (XANES) spectra at Al K-, and Ni L(2,3)-edges and extended X-ray absorption fine structure (EXAFS) at Ni K-edges are discussed. The observed XRD peaks indicate the improvement of crystalline nature and Al(111) clustering after the swift heavy ion interactions. While the XANES spectra at Ni L(2,3)-edges show decrease in the intensity of white line strength, the Al K-edge shows increase in intensity after irradiation. Above results imply that swift heavy ions induce low Z (i.e., Al) ion mass transport, changes in Al sp-Ni-d hybridization, and charge transfer. EXAFS results show that crystalline nature is improved after swift heavy irradiation which is consistent with XRD results.  相似文献   
165.
The conformational distribution of methyl phenyl sulfoxide (a molecule representative of a very important class of reagents widely used in asymmetric synthesis) has been studied in two different phases of matter (gas phase and solution) by a comprehensive approach including theoretical calculations, microwave spectroscopy, liquid crystal NMR experiments, and atomistic molecular dynamics computer simulations. The aim was to investigate the combined action of intra- and intermolecular interactions in determining the molecule's conformational equilibrium, upon which important physicochemical properties (inter alia, the chemoselectivity) significantly depend. Basically, the results converge in describing the tendency of the molecule to favor stable conformations governed by intramolecular interactions (in particular, the expected optimization between steric repulsion and conjugation of pi systems). However, significant solvent effects (whose "absolute" magnitude is actually difficult to assess, due to a certain "method-dependence" of the results) have been also detected.  相似文献   
166.
This work was aimed at optimizing a protein extraction procedure for date palm (Phoenix dactylifera L.) leaves, a highly recalcitrant plant tissue for 2-DE. Five protein extraction protocols based on different protein precipitation agents (TCA/acetone vs. phenol (Ph) methods) and protein resolubilization methods (physical treatments, e.g., sonication, shaking and/or heating) were tested. Ph/SDS extraction with methanol/ammonium acetate precipitation, followed by DOC preincubation and TCA/acetone precipitation and, finally, solubilization by shaking in rehydration solution was found to be the best protein extraction method. We conclude that DOC with TCA/acetone precipitation step eliminates interfering compounds, thus allowing efficient resolubilization of date palm leaf proteins. This method could be appropriate for proteomic studies such as date palm colonization by entomopathogenic fungi.  相似文献   
167.
The interaction between oxidized (ubiquinone-10) and reduced (ubiquinol-10) coenzyme Q 10 with dimyristoylphosphatidylcholine has been examined by differential scanning microcalorimetry, X-ray diffraction, infrared spectroscopy, and (2)H NMR. Microcalorimetry experiments showed that ubiquinol-10 perturbed considerably more the phase transition of the phospholipids than ubiquinone-10, both forms giving rise to a shoulder of the main transition peak at lower temperatures. Small angle X-ray diffraction showed an increase in d-spacing suggesting a thicker membrane in the presence of both ubiquinone-10 and ubiquinol-10, below the phase transition and a remarkable broadening of the peaks indicating a loss of the repetitive pattern of the lipid multilamellar vesicles. Infrared spectroscopy showed an increase in wavenumbers of the maximum of the CH 2 stretching vibration at temperatures below the phase transition, in the presence of ubiquinol-10, indicating an increase in the proportion of gauche isomers in the gel phase, whereas this effect was smaller for ubiquinone-10. A very small effect was observed at temperatures above the phase transition. (2)H NMR spectroscopy of perdeuterated DMPC showed only modest changes in the spectra of the phospholipids occasioned by the presence of coenzyme Q 10. These small changes were reflected, in the presence of ubiquinol-10, by a decrease in resolution indicating that the interaction between coenzyme Q and phospholipids changed the motion of the lipids. The change was also visible in the first spectral moment (M1), which is related with membrane order, which was slightly decreased at temperatures below the phase transition especially with ubiquinol-10. A slight decrease in M 1 values was also observed above the phase transition but only for ubiquinol-10. These results can be interpreted to indicate that most ubiquinone-10 molecules are localized in the center of the bilayer, but a considerable proportion of ubiquinol-10 molecules may span the bilayer interacting more extensively with the phospholipid acyl chains.  相似文献   
168.
Immobilization of porphyrin complexes into crystalline metal–organic frameworks (MOFs) enables high exposure of porphyrin active sites for CO2 electroreduction. Herein, well-dispersed iron-porphyrin-based MOF (PCN-222(Fe)) on carbon-based electrodes revealed optimal turnover frequencies for CO2 electroreduction to CO at 1 wt.% catalyst loading, beyond which the intrinsic catalyst activity declined due to CO2 mass transport limitations. In situ Raman suggested that PCN-222(Fe) maintained its structure under electrochemical bias, permitting mechanistic investigations. These revealed a stepwise electron transfer-proton transfer mechanism for CO2 electroreduction on PCN-222(Fe) electrodes, which followed a shift from a rate-limiting electron transfer to CO2 mass transfer as the potential increased from −0.6 V to −1.0 V vs. RHE. Our results demonstrate how intrinsic catalytic investigations and in situ spectroscopy are needed to elucidate CO2 electroreduction mechanisms on PCN-222(Fe) MOFs.  相似文献   
169.
IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the (1)H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3-(trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating (13)C NMR chemical shifts in solids to the scales used for high-resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice.  相似文献   
170.
We have successfully controlled the size and shape of isotropic and anisotropic gold nanocrystals through a one-step reaction by using amphiphilic polyethylene oxide-polystyrene oxide block copolymers as both reductant and stabilizing agents in water solution. Spherical or quasispherical nanoparticles were obtained at room temperature with tunable mean sizes and polydispersities depending on reaction conditions, that is, on copolymer block length, and copolymer and gold salt concentrations. By moderate increases of reaction temperature up to 65 degrees C, progressive formation of single-crystalline gold nanoplates in good yields takes place (up to 70%) without the necessity of additional reactants or growing solutions. These nanoplates are characterized by lateral mean sizes between 0.1-1.2 microm depending on copolymer concentration and reaction temperature, with mainly truncated or rounded triangular shapes with {111} planes as two basal surfaces. This allows us to tune the surface plasmon band of the nanoplates from ca. 850 nm to more than 1100 nm, well inside the near-infrared region (NIR), which enables the use of these type of nanostructures as a very promsing materials in applications such as optical coatings, SERS, and cancer cell hyperthermia. We proposed that the growth of these nanostructures can stem from a decrease in the reaction rate as temperature increases due to an enhanced copolymer hydrophobicity, which gives rise to a structure of interacting micelles formed from the fluid via a percolation transition (known as "soft gel") at elevated temperatures. In this way, reduction becomes slow enough to allow kinetic control of the reaction, and preferential adsorption of the copolymer molecules/micelles on certain crystallographic planes can favor the growth of certain nanocrystal facets to give the final structure. This alternative water-based system provides a more convenient and environmentally benign route to the synthesis of shape-controlled noble-metal nanocrystals in high yield because it does not involve toxic organic solvents or reagents and serves as a bridge between two frontline discipline: the block copolymeric science and anisotropic nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号