首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   446篇
  免费   28篇
  国内免费   12篇
化学   311篇
晶体学   2篇
力学   7篇
数学   72篇
物理学   94篇
  2024年   1篇
  2023年   2篇
  2022年   23篇
  2021年   19篇
  2020年   17篇
  2019年   36篇
  2018年   44篇
  2017年   20篇
  2016年   38篇
  2015年   24篇
  2014年   31篇
  2013年   74篇
  2012年   30篇
  2011年   40篇
  2010年   23篇
  2009年   17篇
  2008年   11篇
  2007年   9篇
  2006年   7篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1987年   1篇
  1984年   2篇
排序方式: 共有486条查询结果,搜索用时 15 毫秒
41.
The emergence of multi‐drug resistant (MDR) bacteria and dynamic pattern of infectious diseases demand to develop alternative and more effective therapeutic strategies. Silver nanoparticles (AgNPs) are among the most widely commercialized engineered nanomaterials, because of their unique properties and increasing use for various applications in nanomedicine. This study for the first time aimed to evaluate the antibacterial and antibiofilm activities of newly synthesized nanochelating based AgNPs against several Gram‐positive and ‐negative nosocomial pathogens. Nanochelating technology was used to design and synthesize the AgNPs. The cytotoxicity was tested in human cell line using the MTT assay. AgNPs minimal inhibitory concentration (MIC) was determined by standard broth microdilution. Antibiofilm activity was assayed by a microtiter‐plate screening method. The two synthesized AgNPs including AgNPs (A) with the size of about 20‐25 nm, and AgNPs (B) with 30‐35 nm were tested against Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii, and Pseudomonas aeruginosa. AgNPs exhibited higher antibacterial activity against Gram‐positive strains. AgNPs were found to significantly inhibit the biofilm formation of tested strains in concentration 0.01 to 10 mg/mL. AgNPs (A) showed significant effective antibiofilm activity compared to AgNPs (B). In summary, our results showed the promising antibacterial and antibiofilm activity of our new nanochelating based synthesized AgNPs against several nosocomial pathogens.  相似文献   
42.
A rapid and simple approach for the preconcentration and determination of catechin from pistachio green hull samples has been proposed by surfactant-assisted dispersive liquid–liquid microextraction followed by UV–Vis spectrophotometry (SADLLME/UV–Vis). This method involved the formation of a catechin complex with cetylpyridinium chloride (CPC) as cationic surfactant, and subsequently, DLLME was applied to extract the catechin–CPC complex into chloroform. Different parameters affected the extraction efficiency were optimized by central composite design (CCD) and response surface methodology (RSM). In optimum condition, the calibration curve was linear in the range of 0.4–5 µg mL??1 of catechin with correlation coefficient of 0.9982. The relative standard deviation based on five replicated analyses of 1 µg mL??1 catechin was 1.85%. The proposed method was successfully applied for preconcentration and determination of trace amounts of catechin in pistachio hull samples.  相似文献   
43.
We report synthesis of silica nanospheres containing ferrocene-tagged imidazolium acetate (SiO2@Im-Fc[OAc]) as efficient heterogeneous nanocatalyst for synthesis of naphthopyran derivatives under solvent-free conditions, based on modification of nano SiO2 by ionic liquid with ferrocene tags and subsequent anion metathesis reaction. The synthesized novel nanocatalyst (SiO2@Im-Fc[OAc]) was systematically characterized using Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and field-emission scanning electron microscopy. The catalytic activity of (SiO2@Im-Fc[OAc]) was tested in one-pot three-component reaction of aromatic aldehydes, malononitrile, and 2-naphthol for facile synthesis of naphthopyran derivatives. To achieve high catalytic efficacy, the effects of various reaction parameters such as temperature, amount of catalyst, type of solvent, etc. were investigated. Furthermore, recovery and reuse of the nanocatalyst several times was demonstrated without appreciable loss in catalytic activity. The presented protocol offers several advantages, including green and ecofriendly nature, operational simplicity, higher yield, and easy recovery and reuse of the nanostructured catalyst. The workup of these very clean reactions involves only recrystallization of the product from ethanol and recovery of the catalyst by filtration.  相似文献   
44.
Pervaporation (PV) separation of water–acetonitrile mixture using sodium alginate (NaAlg) based mixed matrix membranes (MMM) comprising different amounts of nano NaA zeolite (10, 20 and 30 wt%) is investigated in various concentrations of water and temperatures. The prepared membranes are modified by sulfosuccinic acid (SSA) as a crosslinking agent. NaAlg-NaA/SSA membranes are synthesized by a solution casting technique. The process and membrane performance including separation factor, flux and activation energy of permeation are determined. Results reveal that adding of nano zeolite may lead to an increase in the flux and the separation factor of sodium alginate membrane up to 123 and 169%. In addition, using MMM in dehydration of a feed containing 30 wt% of water shows much better performance than alginate membrane. Furthermore, the activation energy of water permeation through MMM is predicted lower than sodium alginate membrane which reflects the facilitated permeation of water through MMM.  相似文献   
45.
46.
Zamani  Naser 《Mathematical Notes》2017,102(1-2):133-133
Mathematical Notes - This article has been retracted at the request of the Editorial Board of the journal in accordance with the COPE guidelines. This article contains a significant amount of...  相似文献   
47.
In this paper we investigate the Hyers-Ulam-Rassias stability of the following functional equation:
  相似文献   
48.
49.
In this paper, a numerical method for solving Lane‐Emden type equations, which are nonlinear ordinary differential equations on the semi‐infinite domain, is presented. The method is based upon the modified rational Bernoulli functions; these functions are first introduced. Operational matrices of derivative and product of modified rational Bernoulli functions are then given and are utilized to reduce the solution of the Lane‐Emden type equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号