首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   3篇
化学   90篇
数学   3篇
  2021年   2篇
  2020年   1篇
  2017年   1篇
  2016年   7篇
  2015年   3篇
  2014年   4篇
  2013年   17篇
  2012年   1篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   7篇
  2006年   8篇
  2005年   4篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1989年   1篇
排序方式: 共有93条查询结果,搜索用时 484 毫秒
51.
The reduction of analysis time, cost, and improvement of separation efficiency are the main requirements in the development of high‐throughput assay methods in bioanalysis. It can be achieved either by ultra‐high‐performance liquid chromatography (UHPLC) using stationary phases with small particles (<2 μm) at high back pressures or by using opposite direction—monolithic stationary phases with low back pressures. The application of new types of monolithic stationary phases for UHPLC is a novel idea combining these two different paths. The aim of this work was to test the recently introduced second‐generation of monolithic column Chromolith® HighResolution for UHPLC analysis of liposoluble vitamins in comparison with core‐shell and fully porous sub‐2 μm columns with different particle sizes, column lengths, and shapes. The separation efficiency, peak shape, resolution, time of analysis, consumption of mobile phase, and lifetime of columns were calculated and compared. The main purpose of the study was to find a new, not only economical option of separation of liposoluble vitamins for routine practice.  相似文献   
52.
The aim of this study was to develop rapid and simple solid phase extraction (SPE) and HPLC methods for simultaneous determination of retinol, gamma- and alpha-tocopherol in human serum using a special auto sampler with micro titration plates.

Separation of vitamins was performed at ambient temperature using monolithic column on a HPLC containing rack changer for micro titration plates. As the mobile phase methanol with flow rate 2.5 mL min?1 was used. The injection volume was 20 µL. Retinol was detected at 325 nm, gamma- and alpha-tocopherol were carried out at 295 nm, respectively. The total time of analysis was 1.8 minutes. Extraction method was developed using Spe-ed 96 C18, 100 mg/2 mL micro titration plates and SPE vacuum manifold. The consumption of the sample was 50 µL. Time of the analysis for 96 samples on one micro titration plate was 1.5 hour. In order to validate the developed method, precision, accuracy, linearity, detection and quantitation limits were evaluated. This method is suitable for rapid automated large-batch analysis of retinol, alpha- and gamma-tocopherol in small sample volumes of human serum.  相似文献   
53.
The paper deals with the concept of simple automated creation of gradient profile of the mobile phase for gradient-elution sequential injection chromatography (GE-SIC). The feasibility and merits of this concept are demonstrated on the separation and simultaneous assay of indomethacin as active principle and of its two degradation products (5-methoxy-2-methylindoleacetic acid and 4-chloro-benzoic acid) in a topical pharmaceutical formulation.The GE-SIC separation was performed with a FIAlab® 3000 SIC set-up (USA) equipped with an Onyx™ Monolithic C18 (25 mm × 4.6 mm, Phenomenex®) column, a six-port selection valve, a 5-mL syringe pump and a fiber-optics UV CCD detector. Ketoprofen was used as an internal standard (IS). The gradient elution was achieved by automated reproducible mixing of acetonitrile and aqueous 0.2% phosphoric acid in the holding coil of the SIC system. Different profiles of the gradient elution were tested. The optimal gradient using two mobile phases 30:70 and 50:50 of acetonitrile/0.2% phosphoric acid (v/v) was achieved under the optimum flow rate 1.2 mL min−1. The chromatographic resolution R between the peaks of all solutes (including the IS) was >2.00. The repeatability of retention times was characterized by the RSD values 0.18-0.30% (n = 6). Net separation time was 3.5 min and the mobile phase consumption was 4.5 mL for a single GE-SIC assay. The figures of merit of the novel GE-SIC method compared well with those of conventional HPLC.  相似文献   
54.
We obtain exact-order estimates for the best bilinear approximations of the classes Sp,qW B S_{p,\theta }^\Omega B of periodic functions of many variables in the space L q under certain restrictions on the parameters p, q, and θ.  相似文献   
55.
56.
CAD (charged aerosol detector) has recently become a new alternative detection system in HPLC. This detection approach was applied in a new HPLC method for the determination of three of the major statins used in clinical treatment—simvastatin, lovastatin and atorvastatin.The method was optimized and the influence of individual parameters on CAD response and sensitivity was carefully studied. Chromatography was performed on a Zorbax Eclipse XDB C18 (4.6 mm × 75 mm, 3.5 μm), using acetonitrile and formic acid 0.1% as mobile phase. The detection was performed using both CAD (20 pA range) and DAD (diode array detector—238 nm) simultaneously connected in series. In terms of linearity, precision and accuracy, the method was validated using tablets containing atorvastatin and simvastatin.The CAD is designated to be a non-linear detector in a wide dynamic range, however, in this application and in the tested concentration range its response was found to be perfectly linear. The limits of quantitation (0.1 μg/ml) were found to be two times lower than those of UV detection.  相似文献   
57.
58.
A novel simple, fast and efficient ultra-high performance supercritical fluid chromatography (UHPSFC) method was developed and validated for the separation and quantitative determination of eleven illegal dyes in chili-containing spices. The method involved a simple ultrasound-assisted liquid extraction of illegal compounds with tetrahydrofuran. The separation was performed using a supercritical fluid chromatography system and CSH Fluoro-Phenyl stationary phase at 70 °C. The mobile phase was carbon dioxide and the mixture of methanol:acetonitrile (1:1, v/v) with 2.5% formic acid as an additive at the flow rate 2.0 mL min−1. The UV–vis detection was accomplished at 500 nm for seven compounds and at 420 nm for Sudan Orange G, Butter Yellow, Fast Garnet GBC and Methyl Red due to their maximum of absorbance. All eleven compounds were separated in less than 5 min. The method was successfully validated and applied using three commercial samples of chili-containing spices – Chili sauce (Indonesia), Feferony sauce (Slovakia) and Mojo sauce (Spain). The linearity range of proposed method was 0.50–9.09 mg kg−1 (r ≥ 0.995). The detection limits were determined as signal to noise ratio of 3 and were ranged from 0.15 mg kg−1 to 0.60 mg kg−1 (1.80 mg kg−1 for Fast Garnet) for standard solution and from 0.25 mg kg−1 to 1.00 mg kg−1 (2.50 mg kg−1 for Fast Garnet, 1.50 mg kg−1 for Sudan Red 7B) for chili-containing samples. The recovery values were in the range of 73.5–107.2% and relative standard deviation ranging from 0.1% to 8.2% for within-day precision and from 0.5% to 8.8% for between-day precision. The method showed potential for being used to monitor forbidden dyes in food constituents. The developed UHPSFC method was compared to the UHPLC-UV method. The orthogonality of Sudan dyes separation by these two methods was demonstrated. Benefits and drawbacks were discussed showing the reliability of both methods for monitoring of studied illegal dyes in real food constituents.  相似文献   
59.
This work presents novel approach in low-pressure chromatography flow systems—two-column Sequential Injection Chromatography (2-C SIC) and its comparison with gradient elution chromatography on the same instrument. The system was equipped with two different chromatographic columns (connected to selection valve in parallel design) for isocratic separation and determination of all components in composed anti-inflammatory pharmaceutical preparation (tablets). The sample was first injected on the first column of length 30 mm where less retained analytes were separated and then the sample was injected on the second column of length 10 mm where more retained analytes were separated. The SIC system was based on a commercial SIChrom™ manifold (8-port high-pressure selection valve and medium-pressure syringe pump with 4 mL reservoir) (FIAlab®, USA) with two commercially available monolithic columns the “first column” Chromolith® Flash RP-18e (25 mm × 4.6 mm i.d. with guard column 5 mm × 4.6 mm i.d.) and the “second column” Chromolith® RP-18e (10 mm × 4.6 mm i.d.) and CCD UV-vis detector USB 4000 with micro-volume 1.0 cm Z flow cell. Two mobile phases were used for analysis (one for each column). The mobile phase 1 used for elution of paracetamol, caffeine and salicylic acid (internal standard) was acetonitrile/water (10:90, v/v, the water part of pH 3.5 adjusted with acetic acid), flow rate was 0.9 mL min−1 (volume 3.0 mL of mobile phase per analysis). The mobile phase 2 used for elution of propyphenazone was acetonitrile/water (30:70, v/v); flow rate was 1.2 mL min−1 (volume 1.5 mL of mobile phase per analysis). Absorbance was monitored at 210 nm. Samples were prepared by dissolving of one tablet in 30% acetonitrile and 10 μL of filtered supernatant was injected on each column (2 × 10 μL). The chromatographic resolution between all compounds was >1.45 and analysis time was 5.5 min under the optimal conditions. Limits of detection were determined at 0.4 μg mL−1 for paracetamol, at 0.5 μg mL−1 for caffeine and at 0.7 μg mL−1 for propyphenazone. The new two-column chromatographic set-up developed as an alternative approach to gradient elution chromatography shows evident advantages (time and solvent reduction more than one-third) as compared with single-column gradient SIC method with Chromolith® Flash RP-18 (25 mm × 4.6 mm i.d. with guard column 5 mm × 4.6 mm i.d.).  相似文献   
60.
Fast simultaneous determination of naphazoline nitrate and methylparaben in pharmaceuticals using separation method based on a novel reversed-phase sequential injection chromatography (SIC) is described in this contribution as an alternative to classical HPLC. A Chromolith™ Flash RP-18e (25 mm × 4.6 mm) column (Merck®, Germany) and a FIAlab® 3000 system (USA) with a six-port selection valve and 5.0 ml syringe pump were used for sequential injection chromatographic separations in our study. The mobile phase used was methanol/water (40:65, v/v), pH 5.2 adjusted with triethylamine 0.8 μl ml−1 and acetic acid, at flow rate 0.9 ml min−1. UV detection provided by DAD detector and two wavelengths were simultaneously monitored for increasing sensitivity of determination. Detector was set up at 220 nm for naphazoline nitrate and 256 nm for methylparaben and ethylparaben (IS). There is no necessity to use pre-adjustment of sample of nasal drops (only dilution with mobile phase) so the time of the whole analysis is very short. The validation parameters have shown good results: linearity of determination for both components (naphazoline nitrate and methylparaben), correlation coefficient >0.999; repeatability of determination (R.S.D.) in the range 0.5-1.6% at three different concentration levels, detection limits 0.02 μg ml−1 (naphazoline nitrate) and 0.20 μg ml−1 (methylparaben and ethylparaben), and recovery from the pharmaceutical preparations in the range 100.06-102.55%. The chromatographic resolution between peaks of compounds was more than 4.0 and analysis time was less than 4 min under the optimal conditions. The advantages and drawbacks of SIC against classical HPLC are discussed showing that SIC can be an advantageous alternative in many cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号