首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   9篇
化学   99篇
晶体学   1篇
力学   6篇
数学   40篇
物理学   101篇
  2021年   1篇
  2020年   7篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   11篇
  2015年   5篇
  2014年   2篇
  2013年   9篇
  2012年   11篇
  2011年   16篇
  2010年   8篇
  2009年   8篇
  2008年   9篇
  2007年   9篇
  2006年   11篇
  2005年   11篇
  2004年   9篇
  2003年   14篇
  2002年   2篇
  2001年   8篇
  2000年   13篇
  1999年   8篇
  1998年   7篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   11篇
  1993年   9篇
  1992年   7篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1969年   1篇
  1959年   1篇
  1894年   1篇
排序方式: 共有247条查询结果,搜索用时 31 毫秒
101.
The reaction of [Mn(3)O(O(2)CMe)(6)(py)(3)] with the tripodal ligand H(3)thme (1,1,1-tris(hydroxymethyl)ethane) affords the enneanuclear complex [Mn(9)O(7)(O(2)CCH(3))(11)(thme)(py)(3)(H(2)O)(2)] 1.1MeCN.1Et(2)O. The metallic skeleton of complex 1 comprises a series of 10 edge-sharing triangles that describes part of an idealized icosahedron. Variable temperature direct current (dc) magnetic susceptibility data collected in the 1.8-300 K temperature range and in fields up to 5.5 T were fitted to give a spin ground state of S = (17)/(2) with an axial zero-field splitting parameter D = -0.29 cm(-)(1). Ac susceptibility studies indicate frequency-dependent out-of-phase signals below 4 K and an effective barrier for the relaxation of the magnetization of U(eff) = 27 K. Magnetic measurements of single crystals of 1 at low temperature show time- and temperature-dependent hysteresis loops which contain steps at regular intervals of field. Inelastic neutron scattering (INS) studies on complex 1 confirm the S = (17)/(2) ground state and analysis of the INS transitions within the zero-field split ground state leads to determination of the axial anisotropy, D = -0.249 cm(-)(1), and the crystal field parameter, B(4)(0) = 7(4) x 10(-)(6) cm(-)(1). Frequency domain magnetic resonance spectroscopy (FDMRS) determined the same parameters as D = -0.247 cm(-)(1) and B(4)(0) = 4.6 x 10(-)(6) cm(-)(1). DFT calculations are fully consistent with the experimental findings of two Mn(II) and four Mn(III) ions "spin up" and three Mn(IV) ions "spin down" resulting in the S = (17)/(2) spin ground state of the molecule, with D = -0.23 cm(-)(1) and U = 26.2 K.  相似文献   
102.
The largest single-molecule magnet (SMM) to date has been prepared and studied. Recrystallization of known [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(H(2)O)(4)] (1; 8Mn(III), 4Mn(IV)) from CH(2)Cl(2)/MeNO(2) causes its conversion to [Mn(30)O(24)(OH)(8)(O(2)CCH(2)Bu(t))(32)(H(2)O)(2)(MeNO(2))(4)] (2; 3Mn(II), 26Mn(III), Mn(IV)). The structure of 2 consists of a central, near-linear [Mn(4)O(6)] backbone, to either side of which are attached two [Mn(13)O(9)(OH)(4)] units. Peripheral ligation around the resulting [Mn(30)O(24)(OH)(8)] core is by 32 Bu(t)CH(2)CO(2)(-), 2 H(2)O, and 4 MeNO(2) groups. The molecule has crystallographically imposed C(2) symmetry. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-0.4 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 5, D = -0.51 cm(-1) = -0.73 K, and g = 2.00, where D is the axial zero-field splitting parameter. AC susceptibility measurements in the 1.8-7.0 K range in a zero DC field and a 3.5 G AC field oscillating at frequencies in the 50-997 Hz range revealed a frequency-dependent out-of-phase (chi(M)') signal below 3 K, indicating 2 to be a single-molecule magnet (SMM), the largest yet obtained. Magnetization versus DC field sweeps show hysteresis loops but no clear steps characteristic of quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot that revealed temperature-independent relaxation below 0.3 K. The fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 15 K, where U(eff) is the effective relaxation barrier. Resonant QTM was confirmed from the appearance of a "quantum hole" when the recent quantum hole digging method was employed. The combined results demonstrate that SMMs can be prepared that are significantly larger than any known to date and that this new, large Mn(30) complex still demonstrates quantum behavior.  相似文献   
103.
The syntheses, crystal structures, and magnetic properties of [Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (2), (NMe(4))[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (3), and (NMe(4))(2)[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (4) are reported. Complex 2 displays quasi-reversible redox couples when examined by cyclic voltammetry in CH(2)Cl(2): one-electron reductions are observed at 0.64 and 0.30 V vs ferrocene. The reaction of complex 2 with 1 and 2 equiv of NMe(4)I yields the one- and two-electron reduced analogues, 3 and 4, respectively. Complexes 2.3CH(2)Cl(2), 3.4.5CH(2)Cl(2).(1)/(2)H(2)O, and 4.6C(7)H(8) crystallize in the triclinic P, monoclinic P2/c, and monoclinic C2/c space groups, respectively. The molecular structures are all very similar, consisting of a central [Mn(IV)O(4)] cubane surrounded by a nonplanar alternating ring of eight Mn and eight mu(3)-O(2)(-) ions. Peripheral ligation is provided by 16 bridging C(6)F(5)CO(2)(-) and 4 H(2)O ligands. Bond valence sum calculations establish that the added electrons in 3 and 4 are localized on former Mn(III) ions giving trapped-valence Mn(IV)(4)Mn(III)(7)Mn(II) and Mn(IV)(4)Mn(III)(6)Mn(II)(2) anions, respectively. (19)F NMR spectroscopy in CD(2)Cl(2) shows retention of the solid-state structure upon dissolution and detrapping of the added electrons in 3 and 4 among the outer ring of Mn ions on the (19)F NMR time scale. DC studies on dried microcrystalline samples of 2, 3, and 4.2.5C(7)H(8) restrained in eicosane in the 1.80-10.0 K and 1-70 kG ranges were fit to give S = 10, D = -0.40 cm(-)(1), g = 1.87, D/g = 0.21 cm(-)(1) for 2, S = 19/2, D = -0.34 cm(-)(1), g = 2.04, D/g = 0.17 cm(-)(1) for 3, and S = 10, D = -0.29 cm(-)(1), g = 2.05, D/g = 0.14 cm(-)(1) for 4, where D is the axial zero-field splitting parameter. The clusters exhibit out-of-phase AC susceptibility signals (chi(M)' ') indicative of slow magnetization relaxation in the 6-8 K range for 2, 4-6 K range for 3, and 2-4 K range for 4; the shift to lower temperatures reflects the decreasing magnetic anisotropy upon successive reduction and, hence, the decreasing energy barrier to magnetization relaxation. Relaxation rate vs T data obtained from chi(M)' ' vs AC oscillation frequency studies down to 1.8 K were combined with rate vs T data from DC magnetization decay vs time measurements at lower temperatures to generate an Arrhenius plot from which the effective barrier (U(eff)) to magnetization reversal was obtained; the U(eff) values are 59 K for 2, 49 and 21 K for the slower- and faster-relaxing species of 3, respectively, and 25 K for 4. Hysteresis loops obtained from single-crystal magnetization vs DC field scans are typical of single-molecule magnets with the coercivities increasing with decreasing T and increasing field sweep rate and containing steps caused by the quantum tunneling of magnetization (QTM). The step separations gave D/g values of 0.22 cm(-)(1) for 2, 0.15 and 0.042 cm(-)(1) for the slower- and faster-relaxing species of 3, and 0.15 cm(-)(1) for 4.  相似文献   
104.
105.
106.
The reaction of Pd(OAc)2 with bis-iminophosphoranes Ph3P=NCH2CH2CH2N=PPh3 (1a), [C6H4(C(O)N=PPh3)2-1,3] (1b) and [C6H4(C(O)N=PPh3)2-1,2] (1c), gives the orthopalladated tetranuclear complexes [{Pd(mu-Cl){C6H4(PPh2=NCH2-kappa-C,N)-2}}2CH2]2 (2a) [{Pd(mu-OAc){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',3']2 (2b) and [{Pd(mu-OAc){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',2']2 (2c). The reaction takes place in CH2Cl2 for 1a, but must be performed in glacial acetic acid for 1b and 1c. The process implies in all cases the activation of a C-H bond on a Ph ring of the phosphonium group, with concomitant formation of endo complexes. This is the expected behaviour for 1a, but for 1b and 1c reverses the exo orientation observed in other ketostabilized iminophosphoranes. The influence of the solvent in the orientation of the reaction is discussed. The dinuclear acetylacetonate complexes [{Pd(acac-O,O'){C6H4(PPh2=NCH2-kappa-C,N)-2}}2CH2] (3a), [{Pd(acac-O,O'){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',3'] (3b) and [{Pd(acac-O,O'){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',2'] (3c) have been obtained from the halide-bridging tetranuclear derivatives. The X-ray crystal structure of [3c.4CHCl3] is also reported.  相似文献   
107.
We present a very efficient and accurate method to simulate scanning tunneling microscopy images and spectra from first-principles density functional calculations. The wave functions of the tip and sample are calculated separately on the same footing and propagated far from the surface using the vacuum Green function. This allows us to express the Bardeen matrix elements in terms of convolutions and to obtain the tunneling current at all tip positions and bias voltages in a single calculation. The efficiency of the method opens the door to real time determination of both tip and surface composition and structure, by comparing experiments to simulated images for a variety of precomputed tips. Comparison with the experimental topography and spectra of the Si111-(7 x 7) surface shows a much better agreement with Si than with W tips, implying that the metallic tip is terminated by silicon.  相似文献   
108.
109.
By carefully mixing Pd metal nanoparticles with CeO2 polycrystalline powder under dry conditions, an unpredicted arrangement of the Pd‐O‐Ce interface is obtained in which an amorphous shell containing palladium species dissolved in ceria is covering a core of CeO2 particles. The robust contact that is generated at the nanoscale, along with mechanical forces generated during mixing, promotes the redox exchange between Pd and CeO2 and creates highly reactive and stable sites constituted by PdOx embedded into CeO2 surface layers. This specific arrangement outperforms conventional Pd/CeO2 reference catalysts in methane oxidation by lowering light‐off temperature by more than 50°C and boosting the reaction rate. The origin of the outstanding activity is traced to the structural properties of the interface, modified at the nanoscale by mechanochemical interaction.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号