首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   65篇
  国内免费   43篇
化学   284篇
晶体学   3篇
力学   36篇
综合类   1篇
数学   18篇
物理学   219篇
  2023年   5篇
  2022年   5篇
  2021年   10篇
  2020年   5篇
  2019年   10篇
  2018年   7篇
  2017年   7篇
  2016年   17篇
  2015年   9篇
  2014年   17篇
  2013年   23篇
  2012年   41篇
  2011年   51篇
  2010年   26篇
  2009年   30篇
  2008年   43篇
  2007年   40篇
  2006年   33篇
  2005年   40篇
  2004年   24篇
  2003年   11篇
  2002年   14篇
  2001年   6篇
  2000年   7篇
  1999年   4篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   8篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1985年   5篇
  1984年   8篇
  1983年   1篇
  1982年   6篇
  1981年   5篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1957年   1篇
  1956年   1篇
排序方式: 共有561条查询结果,搜索用时 15 毫秒
541.
Fullerene polymers made of C(60) are systematically investigated by means of a first-principles pseudopotential approach within the local density approximation of the density functional theory. We assume 10 different structures of fullerene polymers. The first three are C(60) polymer networks cross-linked by [2+2] cycloadditional four-membered rings, and the other seven are composed of peanut-shaped fused C(60) polymer chains cross-linked by either seven-membered rings or eight-membered rings. Owing to the overlap of wave functions as well as the hybrid networks of sp(2)-like (3-fold coordinated) and sp(3)-like (4-fold coordinated) carbon atoms, the electronic structure is considerably different from each other. We find that the resulting electronic structure is either semiconductor or semimetal depending on the spatial dimensionality of materials.  相似文献   
542.
Summary: A mixture of poly(vinyl methyl ether) (PVME) and a polystyrene derivative bearing cinnamate groups (PSC) was chemically designed so that its phase separation can be tunable by visible light for computer‐assisted irradiation (CAI) experiments. This PSC/PVME blend exhibits a lower critical solution temperature (LCST) and undergoes phase separation upon irradiation with 405 nm visible light. The phase separation was induced by photodimerization of the cinnamate moieties in the presence of 5‐nitroacenaphthene used as a photosensitizer. It was found that for visible light with high intensity, phase separation process was almost frozen by photodimerization of the cinnamate groups which act as a photo‐cross‐linker for the PSC component. It is demonstrated in this work that by using this PSC/PVME blend, phase separation restricted to the micrometer scales can be induced and manipulated by irradiation using a computer‐controlled digital projector. These preliminary results open a new route for spatio‐temporal manipulation of phase separation in photo‐reactive polymer blends.

Computer‐assisted irradiation method for a polymer blend with phase separation drivable by visible light.  相似文献   

543.
544.
The cysteamine (CA) was bound onto surface of the pretreated glassy carbon electrode (GC) with cyclic voltammetry (CV). Gold nanoparticles were self-assembled to the electrode binding with cysteamine via strong AuS covalent bond to fabricate the nano-Au self-assembled modified electrode (nano-Au/CA/GC). The modified electrode was characterized with cyclic voltammetric and ac impedance methods. The electrochemical behavior of dopamine (DA) on the modified electrode was investigated with cyclic voltammetry and differential pulse voltammetry (DPV). A well-defined redox peaks of DA on the nano-Au/CA/GC electrode were obtained at Epa = 0.175 V and Epc = 0.146 V (vs. SCE), respectively. The peak current of DA is linear with the concentration of DA in the range of 1.0 × 10−8 mol L−1 to 2.5 × 10−5 mol L−1, with the correlation coefficient of 0.998. The detection limit is 4.0 × 10−9 mol L−1 (S/N = 3). The modified electrode exhibited an excellent reproducibility, sensibility and stability for determination of DA in the presence of high concentration AA, and can be applied to determinate dopamine injection, with satisfied result.  相似文献   
545.
Although a lattice Monte Carlo method provides an effective, simple, and fast way to study thermodynamic properties of substitutional alloys, it cannot treat by itself the off-lattice effects, such as thermal vibrations and local distortions. Therefore, even if the interaction among atoms at lattice points is calculated accurately by means of first-principles calculations, the lattice Monte Carlo simulation overestimates the order-disorder phase transition temperature. In this paper, we treat this problem in the investigation of the FePt alloy, which has recently attracted considerable interest in its magnetic properties. We apply a simple version of the potential renormalization theory to determine the interaction among atoms, including partly the off-lattice effects by means of first-principles calculations. Then, we use the interaction to perform a lattice Monte Carlo simulation of the FePt alloy on a fcc lattice. From the results, we find that the transition temperature obtained after the present renormalization procedure becomes closer to the experimental value.  相似文献   
546.
547.
Among the putative mechanisms, by which extremely low frequency (ELF) magnetic field (MF) may affect biological systems is that of increasing free radical life span in organisms. To test this hypothesis, we investigated whether ELF (60 Hz) MF can modulate antioxidant system in mouse brain by detecting chemiluminescence and measuring superoxide dismutase (SOD) activity in homogenates of the organ. Compared to sham exposed control group, lucigenin-initiated chemiluminescence in exposed group was not significantly increased. However, lucigenin-amplified t-butyl hydroperoxide (TBHP)-initiated brain homogenates chemiluminescence, was significantly increased in mouse exposed to 60 Hz, MF, 12 G for 3 h compared to sham exposed group. We also measured SOD activity, that plays a critical role of the antioxidant defensive system in brain. In the group exposed to 60 Hz, MF, 12 G for 3 h, brain SOD activity was significantly increased. These results suggest that 60 Hz, MF could deteriorate antioxidant defensive system by reactive oxygen species (ROS), other than superoxide radicals. Further studies are needed to identify the kind of ROS generated by the exposure to 60 Hz, MF and elucidate how MF can affect biological system in connection with oxidative stress.  相似文献   
548.
We report an aptamer discovery technology that reproducibly yields higher affinity aptamers in fewer rounds compared to conventional selection. Our method (termed particle display) transforms libraries of solution‐phase aptamers into “aptamer particles”, each displaying many copies of a single sequence on its surface. We then use fluorescence‐activated cell sorting (FACS) to individually measure the relative affinities of >108 aptamer particles and sort them in a high‐throughput manner. Through mathematical analysis, we identified experimental parameters that enable optimal screening, and demonstrate enrichment performance that exceeds the theoretical maximum achievable with conventional selection by many orders of magnitude. We used particle display to obtain high‐affinity DNA aptamers for four different protein targets in three rounds, including proteins for which previous DNA aptamer selection efforts have been unsuccessful. We believe particle display offers an extraordinarily efficient mechanism for generating high‐quality aptamers in a rapid and economic manner, towards accelerated exploration of the human proteome.  相似文献   
549.
We report the first electrochemical system for the detection of single‐nucleotide polymorphisms (SNPs) that can accurately discriminate homozygous and heterozygous genotypes using microfluidics technology. To achieve this, our system performs real‐time melting‐curve analysis of surface‐immobilized hybridization probes. As an example, we used our sensor to analyze two SNPs in the apolipoprotein E (ApoE) gene, where homozygous and heterozygous mutations greatly affect the risk of late‐onset Alzheimer’s disease. Using probes specific for each SNP, we simultaneously acquired melting curves for probe–target duplexes at two different loci and thereby accurately distinguish all six possible ApoE allele combinations. Since the design of our device and probes can be readily adapted for targeting other loci, we believe that our method offers a modular platform for the diagnosis of SNP‐based diseases and personalized medicine.  相似文献   
550.
Two neutral pyrazolato diimine rhenium(I) carbonyl complexes with formula [Re(CO)(3)(N-N)(btpz)] where N-N = 2,2'-bipyridine (1) and 1,10-phenanathroline (2), and btpz = 3,5-bis(trifluoromethyl) pyrazolate, were synthesized and characterized by elemental analysis, routine spectroscopic methods, and single-crystal X-ray diffraction study. Ground and excited state properties of these complexes were investigated by steady-state and time-resolved spectroscopies. Complexes 1 and 2 show photoluminescent emission in both solution and solid-state at room temperature, arising from metal to ligand charge-transfer (MLCT) transition with strong overlapping of intraligand pi --> pi transitions. The long-lived excited state lifetimes of complexes 1 and 2, which are on the order of microseconds, indicate the presence of phosphorescent emission. As these complexes hold the potential to serve as phosphors for organic light-emitting diodes (OLEDs), their electroluminescent performances were evaluated by employing them as dopants of various electron transport layer (ETL) or hole transport layer (HTL) hosts. For complex 1, a green electrophosphorescence emission centered at lambda(max) = 530 nm was observed at low turn-on voltage ( approximately 6 V) with luminous power efficiency of 0.72 lm/W, external quantum efficiency of 0.82%, and luminance of 2300 cd/m(2) at a current density of 100 mA/cm(2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号