首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   1篇
化学   26篇
力学   3篇
数学   10篇
物理学   46篇
  2022年   1篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2006年   8篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1996年   4篇
  1994年   3篇
  1993年   1篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1943年   1篇
  1941年   1篇
  1940年   4篇
  1935年   2篇
  1920年   2篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
11.
Two-dimensional gel electrophoresis (2-DE) and tandem mass spectrometry were successfully used for determination of a phosphorylation site of stathmin induced by heat stress to Jurkat cells of a human T lymphoblastic cell line. The cells were incubated for 30 min at 41 degrees C up to 45 degrees C in a serum free 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffered culture medium. The intracellular soluble proteins were separated by 2-DE, and some of the proteins increased their abundance by heat stress. Those proteins were identified to be calmodulin, protein kinase C substrate, thymosin beta-4 and F-actin capping protein beta-subunit by peptide mass fingerprinting (PMF) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). On the contrary, protein phosphatase 2C gamma-isoform, nucleophosmin, translationally controlled tumor protein, Rho GDP-dissociation inhibitor-1, eukaryotic translation initiation factors 5A and 3A subunit 2, ubiquitin-like protein SMT 3B and chloride intracellular channel protein-1 were decreased their abundance. A protein spot of M(r) 18,000 and pI 5.9 was markedly increased at temperatures higher than 43 degrees C at which the cells were led to apoptosis. The spot was identified to be stathmin of a signal relay protein which has a function of sequestering microtubule. MALDI-quadrupole ion trap (QIT)-TOF-MS/MS and immunoblotting with a monoclonal antibody specific for a phosphorylation site of stathmin showed that the spot was a phosphorylated stathmin at serine 37 (Ser 37). The phosphorylation was suppressed by treatment of cells with olomoucine of an inhibitor specific for cyclin dependent kinase (Cdk-1). These results strongly suggest that heat stress activates Cdk-1 which phosphorylates Ser 37 on the stathmin molecule. The phosphorylation may cause the functional loss of stathmin for dynamic microtubule assembly and leads Jurkat cells to cell cycle arrest and apoptosis.  相似文献   
12.
13.
A classical dynamical model which includes dissipative forces is suggested for heavy ion reactions high above the Coulomb barrier. Internal degrees of freedom corresponding to rotation of the ions are included. The reactions divide into three parts: (1) quasi-elastic scattering, with relatively small energy loss, associated with higher angular momenta, (2) deep inelastic scattering, with larger energy loss and considerable transfer of mass, associated with intermediate angular momenta, and (3) complete fusion where a highly excited compound state is formed, generally associated with the lowest angular momenta. One can predict a fusion cross section for two values of the friction coefficient, “weak” and “strong” friction cases. Reasonable values for fusion can be obtained in the weak friction case, but scattering angular distributions are not consistent with available experimental data. In the strong friction case it is more difficult to fit all the fusion cross sections with a single friction parameter. But the predicted angular distributions and energy losses are in better agreement with experiment than for the weak friction case.  相似文献   
14.
15.
16.
17.
Stathmin is a ubiquitous cytosolic phosphoprotein participating in the relay and integration of diverse intracellular signaling pathways involved in the control of cell proliferation, differentiation, and activities. It is phosphorylated in response to diverse extracellular signals including hormones and growth factors, and it is highly expressed during development and in diverse tumoral cells and tissues. Stathmin interacts with tubulin and other potential protein partners such as BiP, KIS, CC1 and CC2/tsg101. In our present search for further functional partners of stathmin, we identified proteins in the Hsp70 family, and in particular Hsc70, as interacting with stathmin in vitro. Hsc70 is among the proteins coimmunoprecipitated with stathmin, and it is the main protein retained specifically on stathmin-Sepharose beads identified by one- and two-dimensional electrophoresis and immunoblots. Bovine serum albumin (BSA)-Sepharose did not bind Hsc70, and anti-stathmin antisera specifically inhibited the interaction of Hsc70 with stathmin-Sepharose. The binding of Hsc70 to stathmin is dependent on the phosphorylation status of stathmin, as it did not occur with a "pseudophosphorylated" mutant form of stathmin. This interaction is further dependent on the ATP status of Hsc70. It was inhibited in the presence of ATP-Mg++ but not in the presence of ATP-Mg++ and ethylenediaminetetraacetic acid (EDTA) or of ADP. Our results suggest that the interaction of stathmin with Hsc70 is specific in both proteins and most likely biologically relevant in the context of their functional implication in the control of numerous intracellular signaling and regulatory pathways, and hence of normal cell growth and differentiation.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号