首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3964篇
  免费   145篇
  国内免费   48篇
化学   2734篇
晶体学   31篇
力学   152篇
数学   354篇
物理学   886篇
  2023年   14篇
  2022年   39篇
  2021年   65篇
  2020年   72篇
  2019年   58篇
  2018年   46篇
  2017年   44篇
  2016年   100篇
  2015年   87篇
  2014年   141篇
  2013年   232篇
  2012年   248篇
  2011年   289篇
  2010年   182篇
  2009年   203篇
  2008年   242篇
  2007年   202篇
  2006年   195篇
  2005年   178篇
  2004年   171篇
  2003年   158篇
  2002年   165篇
  2001年   105篇
  2000年   112篇
  1999年   60篇
  1998年   55篇
  1997年   48篇
  1996年   62篇
  1995年   50篇
  1994年   45篇
  1993年   44篇
  1992年   29篇
  1991年   27篇
  1990年   24篇
  1989年   32篇
  1988年   16篇
  1987年   25篇
  1986年   26篇
  1985年   33篇
  1984年   28篇
  1983年   29篇
  1982年   19篇
  1981年   21篇
  1980年   13篇
  1979年   13篇
  1978年   12篇
  1977年   16篇
  1976年   20篇
  1975年   18篇
  1974年   10篇
排序方式: 共有4157条查询结果,搜索用时 0 毫秒
991.
We developed the photo‐crosslinkable hydrogel‐based 3D microfluidic device to culture neural stem cells (NSCs) and tumors. The photo‐crosslinkable gelatin methacrylate (GelMA) polymer was used as a physical barrier in the microfluidic device and collagen type I gel was employed to culture NSCs in a 3D manner. We demonstrated that the pore size was inversely proportional to concentrations of GelMA hydrogels, showing the pore sizes of 5 and 25 w/v% GelMA hydrogels were 34 and 4 μm, respectively. It also revealed that the morphology of pores in 5 w/v% GelMA hydrogels was elliptical shape, whereas we observed circular‐shaped pores in 25 w/v% GelMA hydrogels. To culture NSCs and tumors in the 3D microfluidic device, we investigated the molecular diffusion properties across GelMA hydrogels, indicating that 25 w/v% GelMA hydrogels inhibited the molecular diffusion for 6 days in the 3D microfluidic device. In contrast, the chemicals were diffused in 5 w/v% GelMA hydrogels. Finally, we cultured NSCs and tumors in the hydrogel‐based 3D microfluidic device, showing that 53–75% NSCs differentiated into neurons, while tumors were cultured in the collagen gels. Therefore, this photo‐crosslinkable hydrogel‐based 3D microfluidic culture device could be a potentially powerful tool for regenerative tissue engineering applications.  相似文献   
992.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   
993.
An orthogonal array design (OAD) was applied to optimize microwave-assisted derivatization (MAD) for analysis of trace amphetamine (AM) and methamphetamine (MA) by negative chemical ionization gas chromatography–mass spectrometry (NCI GC–MS). The 2,3,4,5,6-pentafluorobenzoyl chloride (PFBC) was used as a derivatization reagent. Experimental factors including solvent, microwave power, and irradiation time at four-levels were studied in 16 trials by OAD16 (44). The significance of these factors was investigated using analysis of variance (ANOVA) and percent contribution (PC). Solvent is statistically demonstrated a chief factor; microwave power and irradiation time are secondary factors. Under the optimum condition, calibration curve of AM is linear over a range from 0.01 to 100 ng mL−1 with correlation coefficient 0.9988, and MA from 0.1 to 1000 ng mL−1 with correlation coefficient 0.9951. The limit of detection (LOD) is 1.20 pg mL−1 for AM and 13.04 pg mL−1 for MA. An applicability of the method was tested by analyzing urine samples from amphetamine-type stimulants (ATS)-abusing suspects. Consequently, the OAD method not only optimizes the MAD condition for determination of trace AM and MA, but identifies the effects of factor solvent, microwave power and irradiation time on the MAD performance.  相似文献   
994.
Unfolded vs native CO-coordinated horse heart cytochrome c (h-cyt c) and a heme axial methionine mutant cyt c552 from Hydrogenobacter thermophilus ( Ht-M61A) are studied by IR absorption spectroscopy and ultrafast 2D-IR vibrational echo spectroscopy of the CO stretching mode. The unfolding is induced by guanidinium hydrochloride (GuHCl). The CO IR absorption spectra for both h-cyt c and Ht-M61A shift to the red as the GuHCl concentration is increased through the concentration region over which unfolding occurs. The spectra for the unfolded state are substantially broader than the spectra for the native proteins. A plot of the CO peak position vs GuHCl concentration produces a sigmoidal curve that overlays the concentration-dependent circular dichroism (CD) data of the CO-coordinated forms of both Ht-M61A and h-cyt c within experimental error. The coincidence of the CO peak shift curve with the CD curves demonstrates that the CO vibrational frequency is sensitive to the structural changes induced by the denaturant. 2D-IR vibrational echo experiments are performed on native Ht-M61A and on the protein in low- and high-concentration GuHCl solutions. The 2D-IR vibrational echo is sensitive to the global protein structural dynamics on time scales from subpicosecond to greater than 100 ps through the change in the shape of the 2D spectrum with time (spectral diffusion). At the high GuHCl concentration (5.1 M), at which Ht-M61A is essentially fully denatured as judged by CD, a very large reduction in dynamics is observed compared to the native protein within the approximately 100 ps time window of the experiment. The results suggest the denatured protein may be in a glassy-like state involving hydrophobic collapse around the heme.  相似文献   
995.
996.
Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation systems to obtain higher yields with increased phytochemical concentrations using convenient light sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth. Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense system and providing protection from oxidative damage. Since different plant species respond differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands before large-scale LED application for controlled in vitro plant growth. This review focuses on the most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids, anthocyanins, and antioxidant enzymes, have also been discussed.  相似文献   
997.
Lo CK  Paau MC  Xiao D  Choi MM 《Electrophoresis》2008,29(11):2330-2339
An effective capillary electrophoretic technique for separating samples of negatively charged, polydisperse, water-soluble gold monolayer-protected cluster (Au MPC) protected by monolayers of N-acetyl-L-cysteine has been developed. The separation mechanisms of the Au MPC in CZE suggest that the larger core sizes Au MPC emerge first from the capillary. The electrophoretic separation depends on pH, buffer concentration, and organic modifiers. The addition of aliphatic alcohols to the run buffer can improve the separation of Au MPC by reducing the EOF and changing the selectivity between the Au MPCs. The enhancement of resolution is attributed to the more significant difference in the charge-to-size ratio between the Au MPCs. The run buffer containing 20 v/v % ethanol provides the best separation for water-soluble Au MPC. Our proposed CE method provides a powerful tool to evaluate and separate the water-soluble Au MPC products.  相似文献   
998.
The ultra-low density graphene xerogel was prepared through the chemical reduction of graphene oxide suspension using a hypophosphorous acid-iodine mixture. The chemically converted graphene xerogel (CCGX) exhibited superior electrical conductivity (up to 500 S m(-1)) and high C/O atomic ratio (14.7), which were the highest values reported for the graphene-based xerogel.  相似文献   
999.
An efficient, three-component domino reaction of dimedone 1, aromatic aldehydes (2ao), and 1,3-cyclohexanedione 1a in the regio-selective synthesis of 3,3-dimethyl-9-phenyl-2H-xanthene-1,8(5H,9H)-diones (3ao) is reported. The desired product, 3 is efficiently promoted by ascorbic acid as an organo catalyst.  相似文献   
1000.
A variety of neutral palladium(II) complexes [Pd(L–L)Cl2] containing 1,3-di(2-pyridyl)propane (1), 1,3-bis(2-pyridyl)-2-pentylpropane (2), 1,3-bis(2-pyridyl)-2-phenylpropane (3a), 1,3-bis(2-pyridyl)-2-tolylpropane (4), and 1,3-bis(2-pyridyl)-2-ferrocenylpropane (5) as chelate ligands (L–L) have been synthesized. The crystal structures of 1,3-diphenyl-2,4-di-pyridin-2-yl-butan-1-ol (3b), 5, [(2)PdCl2], [(4)PdCl2], and [(5)PdCl2] have been determined and show a square planar geometry at palladium(II). The neutral complexes were tested in the polymerization of norbornene and copolymerization of norbornene with norbornene derivatives. The complex bearing the pentyl group exhibited high reactivity to give up to 5.9×105 in molecular weight for the homopolymerization. When [(4)PdCl2] or [(5)PdCl2] was used as a catalyst, homopolymers insoluble at 150 °C in trichlorobenzene were obtained. However, copolymerization of norbornene with norbornene derivatives 8a–d catalyzed by [(4)PdCl2] gave soluble copolymers with molecular weights up to 5.1×105.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号