首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   13篇
  国内免费   8篇
化学   145篇
晶体学   2篇
力学   3篇
数学   27篇
物理学   36篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   7篇
  2016年   8篇
  2015年   8篇
  2014年   3篇
  2013年   25篇
  2012年   21篇
  2011年   17篇
  2010年   9篇
  2009年   5篇
  2008年   15篇
  2007年   15篇
  2006年   9篇
  2005年   11篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1986年   2篇
  1985年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有213条查询结果,搜索用时 640 毫秒
141.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water‐solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3‐glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross‐link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 814–820  相似文献   
142.
143.
Abstract

Sugar dialdoses 5, 9, 15, and 16 were converted into allyltin derivatives 4, 12, 13, and 14, in yields of 35–47% respectively. Treatment of 4, 12, and 13 with a mild Lewis acid (ZnCl2) in methylene chloride caused rearrangement to appropriate dienoaldehydes 1, 19, and 20 which were converted into trienes 2, 21, and 22, respectively, by reaction with Ph3P═CHCO2Me.  相似文献   
144.
145.
146.
147.
A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk adsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing with experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.  相似文献   
148.
The coordination modes and thermodynamic stabilities of the complexes of the cysteine-rich N-terminal domain fragment of the ZIP13 zinc transporter (MPGCPCPGCG-NH(2)) with Zn(2+), Cd(2+), Bi(3+), and Ni(2+) have been studied by potentiometric, mass spectrometric, NMR, CD, and UV-vis spectroscopic methods. All of the studied metals had similar binding modes, with the three thiol sulfurs of cysteine residues involved in metal ion coordination. The stability of the complexes formed in solution changes in the series Bi(3+) ? Cd(2+) > Zn(2+) > Ni(2+), the strongest being for bismuth and the weakest for nickel. The N-terminal fragment of the human metalothionein-3 (MDPETCPCP-NH(2)) and unique histidine- and cysteine-rich domain of the C-terminus of Helicobacter pyroli HspA protein (Ac-ACCHDHKKH-NH(2)) have been chosen for the comparison studies. It confirmed indirectly which groups were the anchoring ones of ZIP13 domain. Experimental data from all of the used techniques and comparisons allowed us to propose possible coordination modes for all of the studied ZIP13 complexes.  相似文献   
149.
Droplet microfluidic techniques offer an attractive compromise between the throughput (of i.e. reactions per second) and the number of input/output controls needed to control them. Reduction of the number of controls follows from the confinement to essentially one-dimensional flow of slugs in channels which--in turn--relies heavily on the speed of flow of droplets. This speed is a complicated function of numerous parameters, including the volume of droplets (or length L of slugs), their viscosity μ(d), viscosity μ(c) and rate of flow of the continuous phase, interfacial tension and geometry of the cross-section of the channel. Systematic screens of the impact of these parameters on the speed of droplets remain an open challenge. Here we detail an automated system that screens the speeds of individual droplets at a rate of up to 2000 experiments per hour, with high precision and without human intervention. The results of measurements in channels of square cross-section (of width w = 360 μm) for four different values of the contrast of viscosities λ = μ(d)/μ(c) = 0.3, 1, 3, and 33, wide ranges of values of the capillary number Ca ∈ (10(-4), 10(-1)), and wide ranges of lengths of droplets l = L/w∈ (0.8, 30) show that the speed of droplets depends significantly both on l and on λ. The dependence on Ca is very strong for λ > 1, while it is less important both for λ ≤ 1 and for λ ? 1.  相似文献   
150.
Heme proteins serve as a source of oxygen in nervous tissue during anoxia. The functional routes of a dioxygen (O 2) diffusion in a novel structure of a minihemoglobin (CerHb) molecule present in worm Cerebratulus lacteus are not known. In this paper, the results of 1ns molecular dynamics simulations of this process are presented. The locally enhanced sampling method (LES) and CHARMM force field were used for simulations of CerHb with 1–15 copies of O 2. It was found, that several alternative routes are possible. The dominant path consists of two steps. Firstly, ligands move from the heme pocket to a different cavity through the barrier defined by the residues Phe10 and Tyr48. Secondly, ligands leave the protein passing through the more complex barrier situated between the E/F loop and the H helix. We note that the number of paths observed depends on a number of LES copies of (O 2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号