首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   5篇
  国内免费   4篇
化学   140篇
晶体学   1篇
力学   3篇
数学   20篇
物理学   89篇
  2016年   5篇
  2014年   8篇
  2013年   11篇
  2012年   11篇
  2011年   17篇
  2010年   11篇
  2009年   6篇
  2008年   10篇
  2007年   9篇
  2006年   14篇
  2005年   11篇
  2004年   13篇
  2003年   9篇
  2002年   6篇
  2001年   4篇
  2000年   12篇
  1999年   10篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   5篇
  1990年   4篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1983年   1篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1969年   4篇
  1968年   2篇
  1967年   1篇
  1966年   3篇
  1955年   1篇
  1937年   1篇
  1932年   1篇
  1907年   1篇
  1896年   2篇
排序方式: 共有253条查询结果,搜索用时 15 毫秒
51.
Synchrotron radiation sources have proven to be highly beneficial in many fields of research for the characterization of materials. However, only a very limited proportion of studies have been conducted by the forensic science community. This is an area in which the analytical benefits provided by synchrotron sources could prove to be very important. This review summarises the applications found for synchrotron radiation in a forensic trace evidence context as well as other areas of research that strive for similar analytical scrutiny and/or are applied to similar sample materials. The benefits of synchrotron radiation are discussed in relation to common infrared, X-ray fluorescence, tomographic and briefly, X-ray diffraction and scattering techniques. In addition, X-ray absorption fine structure analysis (incorporating XANES and EXAFS) is highlighted as an area in which significant contributions into the characterization of materials can be obtained. The implications of increased spatial resolution on microheterogeneity are also considered and discussed.  相似文献   
52.
53.
A theoretical/computational framework for determining vibrational energy relaxation rates, pathways, and mechanisms, for small molecules and ions in liquids, is presented. The framework is based on the system—bath coupling approach, Fermi’s golden rule, classical time-correlation functions, and quantum correction factors. We provide results for three specific problems: relaxation of the oxygen stretch in neat liquid oxygen at 77 K, relaxation of the water bend in chloroform at room temperature, and relaxation of the azide ion anti-symmetric stretch in water at room temperature. In each case, our calculated lifetimes are in reasonable agreement with experiment. In the latter two cases, theory for the observed solvent isotope effects illuminates the relaxation pathways and mechanisms. Our results suggest several propensity rules for both pathways and mechanisms.  相似文献   
54.
55.
We report in our studies to assess the impact of gamma radiation on silica and on the silica-polymer interface in filled polysiloxane rubber. Electron spin resonance (ESR) and solid-state nuclear magnetic resonance (NMR) studies have been performed on samples exposed to gamma radiation. In an effort to probe directly the effect of gamma radiation on the silica surface, we employed 1H and 29Si NMR. Our ESR studies show trapped paramagnetic species (positive holes and/or trapped electrons) within the host silica matrix for all samples exposed to gamma radiation. A sample of pure cab-o-sil irradiated to a dose of 50 kGy also shows an ESR signal. Our studies on real-time aged samples (derived from field trials) also show ESR signatures indicative of silica based trapped paramagnetic species. The growth of trapped paramagnetic species as a function of gamma dose was investigated. This shows that the build up of trapped species occurs rapidly at low gamma dose before reaching saturation at about 20-30 kGy. Radiation induced band gap excitation is the likely process leading to the creation of these paramagnetic species which may be trapped in regions of local charge deficit within the silica matrix. Species that are not trapped may take part in silica surface reactions leading to changes in filler-polymer interfacial interactions. NMR studies combined with ammonia modified swell studies have shown increased polymer segmental chain mobility (softening) at low gamma dose indicative of a possible reduction in filler-polymer interfacial interactions. For those samples exposed to high gamma dose, our ammonia modified swell studies suggest increased polymer-filler interactions presumably through silica-polymer crosslinking effects. Our 1H and 29Si NMR studies on irradiated silica suggest that the silica surface is sensitive to gamma radiation. Our observations are important as they highlight the need to better control the quality (size, purity, etc.) of the silica constituent in filled polymer components used in gamma radiation environments.  相似文献   
56.
A numerically exact quantum mechanical approach is proposed to evaluate thermal rate constants for systems in a model condensed phase environment. Employing the reactive flux correlation function formalism, the approach efficiently combines the multilayer multiconfiguration time-dependent Hartree theory with an importance sampling scheme for thermal distribution of the initial states. The performance of the method is illustrated by applications to two models of condensed phase dynamics: the donor-acceptor electron transfer model also known as the spin-boson model and a model for proton transfer reactions in the condensed phase.  相似文献   
57.
58.
A method of determining asymptotic expansions for weakly couplednonlinearly perturbed systems of harmonic oscillators with slowlyvarying frequencies is presented. In an example with two oscillators,each one experiences a separate resonance passage that producesa first-order amplitude change. Simultaneously, second-orderadjustments occur to both oscillators. The determination isachieved by carrying the calculations to third order.  相似文献   
59.
Exact product operator solutions have been obtained for the evolution of weakly coupled spin-(1/2) I(m)S(n) systems during arbitrary RF irradiation of one spin. These solutions, which completely characterize the nature of J-coupling modulation during RF pulses, show that significant exchange occurs between single-spin magnetization and two-spin product operator states when the RF field strength is comparable to the coupling. In particular, a long (t(p) = [2J](-1) s), low-power (B(1) = J/2 Hz), constant amplitude pulse applied on resonance to one spin in an IS system completely interconverts the spinstates S(z) <--> 2S(x)I(z) and S(x) <--> 2S(z)I(z) when the RF is applied to the S spins, and interconverts S(x) <--> 2S(y)I(y) in 100% yield when the RF is applied to the I spins. Thus, these "J pulses," which select a bandwidth approximately equal to J Hz, may replace any combination of a (2J)(-1) delay period and a consecutive hard 90 degrees pulse in any polarization transfer or multiple quantum sequence. Although these rectangular pulses are highly frequency selective, in general they increase the replaced (2J)(-1) period by only a modest 40%, a time saving of a factor of 5 compared to existing pulses exhibiting the same selectivity. In favorable cases, there is no increase in duration of a pulse sequence using a particular type of J pulse, the 90(J) variety, which accomplishes the third spin state transformation listed above. J pulses will be advantageous for systems subject to rapid signal loss from relaxation and more generally for the enhanced operation of pulse sequences via the use of J modulation during RF irradiation.  相似文献   
60.
A vector model of adiabatic decoupling is enunciated for an IS-coupled system of two spin- heteronuclei in the high-power limit of ideal adiabatic pulses. The observed S-spin magnetization evolves according to a time-dependent coupling that scales as thezcomponent of an I-spin vector which evolves due to the applied decoupling irradiation. Simple analytical expressions are derived both on and off resonance for the reduced coupling during an ideal sech/tanh inversion pulse and for the resulting signal when either in-phase or antiphase magnetization is present at the start of decoupling. The resulting model allows one to readily envision decoupling experiments, make accurate estimates of sideband intensity, and assess the relative performance of different decoupling schemes. The utility of the model is further demonstrated by applying it to several recently proposed methods for reducing sidebands. In the limit of ideal adiabatic pulses, the predictions of the vector model are almost identical to those of quantum mechanics. At the lower RF power levels used in practical adiabatic decoupling applications, where the pulses are no longer perfectly adiabatic, phase cycles are employed to achieve performance that approximates the ideal limits derived here, so the vector model is more generally applicable, as well. These limits establish standards for future determination of the most efficient parameters for practical applications of broadband adiabatic decoupling in a single transient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号