首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   4篇
  国内免费   1篇
化学   128篇
力学   3篇
数学   14篇
物理学   72篇
  2016年   5篇
  2014年   8篇
  2013年   10篇
  2012年   10篇
  2011年   17篇
  2010年   8篇
  2009年   5篇
  2008年   9篇
  2007年   7篇
  2006年   11篇
  2005年   9篇
  2004年   12篇
  2003年   9篇
  2002年   8篇
  2001年   4篇
  2000年   6篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1969年   4篇
  1968年   2篇
  1967年   1篇
  1966年   3篇
  1955年   1篇
  1937年   1篇
  1932年   1篇
  1907年   1篇
  1896年   2篇
排序方式: 共有217条查询结果,搜索用时 171 毫秒
101.
Passive acoustic towed linear arrays are increasingly used to detect marine mammal sounds during mobile anthropogenic activities. However, these arrays cannot resolve between signals arriving from the port or starboard without vessel course changes or multiple cable deployments, and their performance is degraded by vessel self-noise and non-acoustic mechanical vibration. In principle acoustic vector sensors can resolve these directional ambiguities, as well as flag the presence of non-acoustic contamination, provided that the vibration-sensitive sensors can be successfully integrated into compact tow modules. Here a vector sensor module attached to the end of a 800 m towed array is used to detect and localize 1813 sperm whale "clicks" off the coast of Sitka, AK. Three methods were used to identify frequency regimes relatively free of non-acoustic noise contamination, and then the active intensity (propagating energy) of the signal was computed between 4-10 kHz along three orthogonal directions, providing unambiguous bearing estimates of two sperm whales over time. These bearing estimates are consistent with those obtained via conventional methods, but the standard deviations of the vector sensor bearing estimates are twice those of the conventionally-derived bearings. The resolved ambiguities of the bearings deduced from vessel course changes match the vector sensor predictions.  相似文献   
102.
We study grain-boundary fluctuations in two-dimensional colloidal crystals in real space and time using video microscopy. The experimentally obtained static and dynamic correlation functions are very well described by expressions obtained using capillary wave theory. This directly leads to values for the interfacial stiffness and the interface mobility, the key parameters in curvature-driven grain-boundary migration. Furthermore, we show that the average grain-boundary position exhibits a one-dimensional random walk as recently suggested by computer simulations [Z. T. Trautt, M. Upmanyu, and A. Karma, Science 314, 632 (2006)]. The interface mobility determined from the mean-square displacement of the average grain-boundary position is in good agreement with values inferred from grain-boundary fluctuations.  相似文献   
103.
104.
In this work, copper and tungsten were sputtered onto silicon wafers by direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS). The resulting films were characterized by energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and X-ray diffraction (XRD). By EDX and XPS, all the sputtered films showed only the expected metal peaks. By XPS, the surfaces sputtered by DCMS were richer in oxygen than those produced by HiPIMS. By AFM, the surfaces were quite smooth. The root mean square (RMS) roughness values are as follows: 0.83 nm (W, HiPIMS), 1.10 nm (W, DCMS), 0.85 nm (Cu, HiPIMS), and 1.78 nm (Cu, DCMS). By SEM, the HiPIMS films exhibited smaller grain sizes, which was confirmed by XRD. The crystallite sizes estimated by XRD are as follows: 4 nm (W, body-centered cubic, HiPIMS), 13 nm (W, body-centered cubic, DCMS), 7 nm (W, cubic, HiPIMS), 14 nm (W, cubic, DCMS), 25 nm (Cu, HiPIMS), and 35 nm (Cu, DCMS). By SE, the HiPIMS surfaces showed higher refractive indices, which suggested that they were denser and less oxidized than the DCMS surfaces.  相似文献   
105.
106.
Pyrolysis of a dilute mixture of neopentane (2,2-dimethylpropane) has been studied behind incident shock waves at an average pressure of 0.35 atm; the reaction was followed by absorption spectroscopy for H atoms. In the temperature range 1230–1455 K, the rate constant for dissociation of neopentane to t-butyl and methyl radicals is 1.1 E 13 exp(?62 kcal/RT) s?1. These data and some of the literature results, between 1000 and 1450 K, can be fitted by an RRKM model of the hindered Gorin type, with five active internal rotors in the complex. To match our data with other literature data down to 800 K, a vibrational model was more satisfactory, but this did not fit very low pressure pyrolysis data in the 1000–1100 K range. Apparently, the VLPP data are too high because of heterogeneous processes or chain reactions.  相似文献   
107.
Phase-sensitive vibrational sum-frequency experiments on the water surface, using isotopic mixtures of water and heavy water, have recently been performed. The experiments show a positive feature at low frequency in the imaginary part of the susceptibility, which has been difficult to interpret, and impossible to reproduce using two-body (pairwise-additive) water simulation models. We have reparameterized a new three-body simulation model for liquid water, and with this model we calculate the imaginary part of the sum-frequency susceptibility, finding good agreement with experiment for dilute HOD in D(2)O. Theoretical analysis provides a molecular-level structural interpretation of these new and exciting experiments. In particular, we do not find evidence of any special ice-like ordering at the surface of liquid water.  相似文献   
108.
Lithium wall coatings have been shown to reduce recycling, improve energy confinement, and suppress edge localized modes in the National Spherical Torus Experiment. Here, we show that these effects depend continuously on the amount of predischarge lithium evaporation. We observed a nearly monotonic reduction in recycling, decrease in electron transport, and modification of the edge profiles and stability with increasing lithium. These correlations challenge basic expectations, given that even the smallest coatings exceeded that needed for a nominal thickness of the order of the implantation range.  相似文献   
109.
In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states.  相似文献   
110.
A recently introduced theory of solute transport in porous media is tested by comparison with experiment. The solute transport is predicted using an adaptation of the cluster statistics of percolation theory to critical path analysis together with knowledge of how the structure of such percolation clusters affects the time of transport across them. Only the effects of a single scale of medium heterogeneity are incorporated, and a minimal amount of information regarding the structure of the medium is required. This framework is used to find effectively the distributions of solute velocities and travel distances and thus generate arrival time distributions. The comparison with experiment focuses on the dispersivity (the ratio of the second to the first moment of the spatial solute distribution). The predictions of the theory in the absence of diffusion are verified by comparing with over 2200 experiments over length scales from a few microns to 100 km. At larger length scales (centimeters on up) about 95% of the data lie within our predicted bounds. At smaller length scales approximately 99.8% of the data lie where we predict. These comparisons are not trivial as the typical values of the dispersivity increase by ten orders of magnitude over ten orders of magnitude of length scale. Noteworthy is that the classical advection-dispersion (ADE) equation predicts that the dispersivity should be independent of length scale! This agreement with experiment requires rethinking of the relevance of diffusion and multi-scale heterogeneity and would also appear to signal the complete inappropriateness of using the classical ADE or any of its derivatives to model solute transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号