首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1507篇
  免费   35篇
  国内免费   9篇
化学   1063篇
晶体学   15篇
力学   33篇
数学   171篇
物理学   269篇
  2022年   23篇
  2021年   25篇
  2020年   24篇
  2019年   35篇
  2018年   27篇
  2017年   15篇
  2016年   57篇
  2015年   34篇
  2014年   44篇
  2013年   101篇
  2012年   83篇
  2011年   95篇
  2010年   58篇
  2009年   58篇
  2008年   77篇
  2007年   57篇
  2006年   61篇
  2005年   57篇
  2004年   52篇
  2003年   43篇
  2002年   45篇
  2001年   22篇
  2000年   23篇
  1999年   17篇
  1998年   16篇
  1997年   20篇
  1996年   47篇
  1995年   29篇
  1994年   21篇
  1993年   15篇
  1992年   20篇
  1991年   10篇
  1990年   17篇
  1989年   11篇
  1988年   14篇
  1987年   11篇
  1986年   8篇
  1985年   12篇
  1984年   12篇
  1983年   8篇
  1982年   8篇
  1981年   12篇
  1980年   7篇
  1979年   15篇
  1978年   8篇
  1977年   13篇
  1976年   7篇
  1975年   13篇
  1974年   7篇
  1973年   7篇
排序方式: 共有1551条查询结果,搜索用时 31 毫秒
951.
In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles with an equal number of short and long grafts at low to medium grafting density, the short grafts are in a more coiled up conformation (lower radius of gyration) than their monodisperse counterparts to provide a larger free volume to the longer grafts so they can gain conformational entropy. The longer grafts do not show much difference in conformation from their monodisperse counterparts at low grafting density, but at medium grafting density the longer grafts exhibit less stretched conformations (lower radius of gyration) as compared to their monodisperse counterparts. In the presence of an explicit homopolymer matrix, the longer grafts are more compressed by the matrix homopolymer chains than the short grafts. We observe that the potential of mean force between bidisperse grafted particles has features of the PMF of monodisperse grafted particles with short grafts and monodisperse grafted particles with long grafts. The value of the PMF at contact is governed by the short grafts and values at large inter-particle distances are governed by the longer grafts. Further comparison of the PMF for bidisperse and monodisperse polymer grafted particles in a homopolymer matrix at varying parameters shows that the effects of matrix chain length, matrix packing fraction, grafting density, and particle curvature on the PMF between bidisperse polymer grafted particles are similar to those seen between monodisperse polymer grafted particles.  相似文献   
952.
Osmotic framework adsorbed solution theory is a useful molecular simulation method to predict the evolution of structural transitions upon adsorption of guest molecules in flexible nanoporous solids. One challenge with previous uses of this approach has been the estimation of free energy differences between the solid phases of interest in the absence of adsorbed molecules. Here we demonstrate that these free energy differences can be calculated without reference to experimental data via the vibrational density of states of each phase, a quantity that can be obtained from molecular dynamics simulations. We show the applicability of this method through case studies of the swelling behaviors of two representative systems in which swelling upon adsorption of water is of importance: single-walled aluminosilicate nanotube bundles and cesium montmorillonite. The resulting predictions show that the aluminosilicate nanotube bundles swell significantly with increasing interstitial adsorption and that the layer spacing of cesium montmorillonite expands up to about 12.5 A?, giving good agreement with experiments. The method is applicable to a wide range of flexible nanoporous materials, such as zeolites, metal-organic frameworks, and layered oxide materials, when candidate structures can be defined and a force field to describe the material is available.  相似文献   
953.
A facile three step sol–gel-precipitation process is used to synthesize Mg(OH)2 nanowhiskers on micron-sized zeolite 5A particle surfaces at room temperature. The putative amorphous gelation product, Mg(OH)n(OR)2−n, forms first by a controlled hydrolysis and condensation reaction involving magnesium isopropoxide and water, ultimately leading to precipitation to form Mg(OH)2 structures on the zeolite surface. The optimum conditions for one dimensional Mg(OH)2 whisker formation are found to be six times the stoichiometric amount of water using 1 M HCl as the catalyst for the sol–gel reaction. The one-dimensional Mg(OH)2 whiskers have an average diameter of 5–10 nm and length of 50–100 nm. The zeolite micropores are not affected by the Mg(OH)2 whiskers formed on the surface. The surface roughened zeolite 5A, with a Mg(OH)2 content of about 9 wt%, showed improved adhesion between the zeolite and the polymer in a mixed-matrix composite membrane.  相似文献   
954.
Computational methods have been used in the past to generate large libraries of hypothetical zeolite structures, but to date analysis of these structures has typically been limited to relatively simple physical properties such as density. We use efficient methods to analyze the adsorption and diffusion properties of simple adsorbate molecules in a library of >250,000 hypothetical silica zeolites that was generated previously by Deem and co-workers (J. Phys. Chem. C, 2009, 113, 21353). The properties of this library of materials are compared to the complete set of ~190 zeolites that have been identified experimentally. Our calculations provide information on the largest cavities available in each material for adsorption, and the size of the largest molecules that can diffuse through each material. For a subset of ~8000 materials, we computed the Henry's constant and diffusion activation energy for adsorbed CH(4) and H(2). We show that these calculations provide a useful screening tool for considering large collections of nanocrystalline materials and choosing materials with particular promise for more detailed modeling.  相似文献   
955.
This article addresses the identification and quantification of the chemical species resulting in resonances at 2.17 and 2.25 ppm in the 1H nuclear magnetic resonance (NMR) spectrum of pharmaceutical-grade heparin sodium. The NMR signals in question were first confirmed to arise from chemical moieties covalently attached to the heparin molecule through NMR diffusion experiments as well as chemical treatment of heparin active pharmaceutical ingredient (API) containing the resonances. The material responsible for the extra NMR signals was then demonstrated by NMR spiking studies to be something other than oversulfated chondroitin sulfate and was finally identified as an O-acetylation product of heparin through 13C labeling experiments with subsequent NMR analysis. The extent of O-acetylation was quantified using three orthogonal techniques: 1H NMR, ion chromatography, and headspace gas chromatography/mass spectrometry. The results of this work showed good agreement between the three quantitative methods developed to analyze the signals in the United States Pharmacopeia-specified region of 2.12–3.00 ppm for heparin API.  相似文献   
956.
A concurrent multiscale method is presented that couples a quantum mechanically governed atomistic domain to a continuum domain. The approach is general in that it is applicable to a wide range of quantum and continuum material modeling methodologies. It also provides quantifiable and controllable coupling errors via a force-based-coupling strategy. The applications presented here utilize an atomistic region that is governed by Kohn–Sham density functional theory and a continuum region governed by linear elasticity with discrete dislocation capabilities. As a validation we compute the core structure of a screw dislocation in aluminum and compare to previously published results. Then we investigate two crack orientations in aluminum and predict the critical load at which crack propagation and crack tip dislocation nucleation occurs. We compute critical loads with both LDA and GGA exchange correlation functionals and compare our results to popular empirical potentials in the context of classical continuum models. Overall this work aims to lay a foundation for future quantum mechanics-based investigations of crack tip processes involving Al alloys and impurity elements.  相似文献   
957.
Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35?? resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases but with notable differences, such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional cocrystal structures with phosphonoacetate substrate, acetate, phosphonoformate inhibitor, and a covalently bound transition state mimic provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily.  相似文献   
958.
Kinetics of chemical oxidative polymerization of 4-aminodiphenylamine (4ADPA) was followed in aqueous 1 M p-toluene sulfonic acid (p-TSA) using silver nitrate (AgNO3) as an oxidant by UV-vis spectroscopy. The medium was found to be clear and homogeneous during the course of polymerization. The absorbances corresponding to the intermediate and the polymer were followed for different concentrations of 4ADPA and AgNO3 and at different reaction time. The appearance of a band around 450 nm during the initial stages of polymerization corresponds to the plasmon resonance formed by the reduction of Ag+ ions. Rate of poly(4-aminodiphenylamine)/Ag nanocomposite (RP4ADPA/AgNC) was determined for various reaction conditions. R(P4ADP/AgNC) showed second order power dependence on 4ADPA and first order dependence on AgNO3. The observed order dependences of 4ADPA and AgNO3 on the formation of P4ADPA/AgNC were used to deduce a rate equation for the reaction. Rate constant for the reaction was determined through different approaches. The good agreement between the rate constants obtained through different approaches justifies the selection of rate equation.  相似文献   
959.

The asymmetric unit of compound (I), 4-fluoroanilinium picrate, C6H7NF+.C6H2N3O7? contain one 4-fluoroanilinium cation and one picrate anion whereas in compound (II), dicyclohexylaminium picrate, C12H22N+.C6H2N3O7? the asymmetric unit contains two sets of dicyclohexylaminium cation and picrate anion due to conformational difference between the molecules. In (I), all three nitro groups of the picrate anion are positionally disordered over two sites refined to major and minor components. The molecular ions of (I), interlinked through N–H???O and C–H???O hydrogen bonds forming two-dimensional supramolecular sheet along (-1 0 1) plane. Whereas in (II), the symmetry-independent molecules labeled as A and B molecule form independent one-dimensional supramolecular tape extending along (1 1 0) and (1 0 0) direction. The supramolecular tapes are interlinked through C–H???O interaction to form three-dimensional network in the crystalline solid in (II).

  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号