首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   12篇
  国内免费   4篇
化学   224篇
晶体学   17篇
力学   15篇
数学   17篇
物理学   52篇
  2023年   5篇
  2022年   4篇
  2021年   8篇
  2020年   7篇
  2019年   17篇
  2018年   9篇
  2017年   8篇
  2016年   22篇
  2015年   12篇
  2014年   13篇
  2013年   33篇
  2012年   29篇
  2011年   30篇
  2010年   19篇
  2009年   9篇
  2008年   12篇
  2007年   14篇
  2006年   13篇
  2005年   12篇
  2004年   6篇
  2003年   6篇
  2002年   6篇
  1999年   1篇
  1997年   1篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1935年   1篇
排序方式: 共有325条查询结果,搜索用时 15 毫秒
1.
UV curable epoxy acrylates were reinforced with two different organically modified montmorillonites (MMTs) and an unmodified MMT. Conversion and rate of polymerization was monitored by real time infrared spectroscopy (RTIR) and photo-DSC. Microstructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and optical clarity. Optical clarity of the films containing clay was quite good as only a slight decrease was observed. Physical properties of the reinforced films were examined by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), hardness and tensile testing. Enhancements in glass transition temperature (Tg), thermal stability and mechanical properties were observed. The films reinforced with the unmodified MMT exhibit the most significant enhancements in properties.  相似文献   
2.
A novel access to 1,4-dithiins and 1,4-benzodithiins from the corresponding ketones in one-pot using the recyclable reagent, 1,1′-(ethane-1,2-diyl)dipyridinium bistribromide (EDPBT) is described. This method is mild, simple, environmentally benign and is applied successfully for the ring expansion of 1,3-dithiolane to 1,4-dithiins and the ring expansion associated with aromatisation of cyclic ketones with or without double bonds in the ring. The main feature of this method is that EDPBT acts as a promoter in the formation of 1,3-dithiolane and as a reagent in the ring expansion step. The spent reagent can be recovered, regenerated and reused.  相似文献   
3.
    
The compound 3-hydroxy-6-(4′-nitro)phenylazopyridine (1) was observed to incorporate several organic solvents of crystallisation, forming stable clathrates. These clathrates decompose upon heating and the host material is chemically transformed. Single crystal X-ray diffraction studies on the ethanol clathrate lead to a reasonable model for the host structure. But the guest molecules are severely disordered. Alternatively, the compound forms twinned crystals. The chemically closely related compound2 does not form clathrates.  相似文献   
4.
A new class of polymeric resin has been synthesized by grafting Merrifield chloromethylated resin with (dimethyl amino-phosphono-methyl)-phosphonic acid (MCM-DAPPA), for the preconcentration of U(VI), Th(IV) and La(III) from both acidic wastes and environmental samples. The various chemical modification steps involved during grafting process are characterized by FT-IR spectroscopy, 31P and 13C-CPMAS (cross-polarized magic angle spin) NMR spectroscopy and CHNS/O elemental analysis. The water regain capacity data for the grafted polymer are obtained from thermo-gravimetric (TG) analysis. The influence of various physico-chemical parameters during the quantitative extraction of metal ions by the resin phase are studied and optimized by both static and dynamic methods. The significant feature of this grafted polymer is its ability to extract both actinides and lanthanides from high-level acidities as well as from near neutral conditions. The resin shows very high sorption capacity values of 2.02, 0.89 and 0.54 mmol g−1 for U(VI), 1.98, 0.63 and 0.42 mmol g−1 for Th(IV) and 1.22, 0.39 and 0.39 mmol g−1 for La(III) under optimum pH, HNO3 and HCl concentration, respectively. The grafted polymer shows faster phase exchange kinetics (<5 min is sufficient for 50% extraction) and greater preconcentration ability, with reusability exceeding 20 cycles. During desorption process, all the analyte ions are quantitatively eluted from the resin phase with >99.5% recovery using 1 M (NH4)2CO3, as eluent. The developed grafted resin has been successfully applied in extracting Th(IV) from high matrix monazite sand, U(VI) from sea water and also U(VI) and Th(IV) from simulated nuclear spent fuel mixtures. The analytical data obtained from triplicate measurements are within 3.9% R.S.D. reflecting the reproducibility and reliability of the developed method.  相似文献   
5.
6.
Abstract

A new series of α-aminophosphonates have been synthesized by a one-pot three-component reaction of 2,3-dihydrobenzo[b][1,4]dioxine-6-carbaldehyde, various amines, and dimethyl phosphite by using nano-TiO2 as a catalyst under solvent-free conditions at 50°C. The major advantages of the present method are high yields, short reaction times, recyclable catalyst, and solvent-free reaction conditions. Among these new structurally diversified set of α-aminophosphonates, dimethyl (2,3-dihydrobenzo[b][1,4]dioxin-6-yl)(3-nitrophenylamino) methylphosphonate and dimethyl (2,3-dihydrobenzo[b][1,4]dioxin-6-yl)(4-fluoro-3-nitro-phenyl-amino) methylphosphonate have shown higher antioxidant activity in diphenyl picryl hydrazyl (DPPH) scavenging, reducing power assay, and lipid peroxidation methods.  相似文献   
7.
8.
Magnetic nickel ferrite (NiFe2O4) was prepared by sol–gel process and calcined in the 2.45 GHz singlemode microwave furnace to synthesize nickel nanopowder. The sol–gel method was used for the processing of the NiFe2O4 powder because of its potential for making fine, pure and homogeneous powders. Sol–gel is a chemical method that has the possibility of synthesizing a reproducible material. Microwave energy is used for the calcining of this powder and the sintering of the NiFe2O4 samples. Its use for calcination has the advantage of reducing the total processing time and the soak temperature. In addition to the above combination of sol–gel and microwave processing yields to nanoscale particles and a more uniform distribution of their sizes. X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and vibrating sample magnetometer were carried out to investigate structural, elemental, morphological and magnetic aspects of NiFe2O4. The results showed that the mean size and the saturation magnetization of the NiFe2O4 nanoparticles are about 30 nm and 55.27 emu/g, respectively. This method could be used as an alternative to other chemical methods in order to obtain NiFe2O4 nanoparticles.  相似文献   
9.
Research on Chemical Intermediates - This work is described as an environmental friendly approach for Cu(OAc)2 entrapped on ethylene glycol-modified melamine–formaldehyde-based polymeric...  相似文献   
10.
Thin films of various thicknesses in the MIM structure have been prepared from the the powders of SnO2, Sb2O3 and (SnO2 + Sb2O3) of high purity by the thermal evaporation technique in a vacuum of 10−5 Torr. Dielectric properties of SnO2, Sb2O3, and their mixed thin films have been studied with ac and dc electric fields and frequency. Capacitance and loss tangent are almost independent on dc voltage upto 1.0 V for SnO2, 10.0 V for Sb2O3 and 2.5 V for mixed films. These capacitors become unstable at 1.0 V for SnO2 films and 2.5 V for mixed films. For higher film thicknesses the decay in these films starts at higher voltages. Capacitance and loss tangent increases with applied ac voltage in SnO2, Sb2O3, and their mixed films. A comparison of the capacitance values of SnO2, Sb2O3, and their mixed films showed that the capacitance values are less in Sb2O3 as compared to SnO2 films. In mixed films the capacitance is greater than the constituent films. These studies have shown that Sb2O3 films are found to be more stable compared to SnO2 and their mixed films for ac and dc voltages. The results thus obtained on SnO2, Sb2O3, and their films are presented and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号