首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1604篇
  免费   40篇
  国内免费   2篇
化学   798篇
晶体学   14篇
力学   61篇
数学   144篇
物理学   629篇
  2022年   27篇
  2021年   24篇
  2020年   29篇
  2019年   21篇
  2018年   30篇
  2017年   30篇
  2016年   46篇
  2015年   25篇
  2014年   42篇
  2013年   102篇
  2012年   88篇
  2011年   101篇
  2010年   63篇
  2009年   57篇
  2008年   86篇
  2007年   68篇
  2006年   53篇
  2005年   68篇
  2004年   53篇
  2003年   42篇
  2002年   44篇
  2001年   27篇
  2000年   30篇
  1999年   31篇
  1998年   17篇
  1997年   19篇
  1996年   20篇
  1995年   12篇
  1994年   22篇
  1993年   30篇
  1992年   26篇
  1991年   22篇
  1990年   14篇
  1989年   23篇
  1988年   15篇
  1987年   15篇
  1986年   12篇
  1985年   16篇
  1984年   13篇
  1983年   12篇
  1982年   13篇
  1981年   12篇
  1980年   10篇
  1979年   12篇
  1978年   19篇
  1977年   10篇
  1976年   11篇
  1975年   12篇
  1974年   13篇
  1973年   9篇
排序方式: 共有1646条查询结果,搜索用时 31 毫秒
101.
Imidazole derivatives, namely, 1-((1-(piperazinomethyl)-1H-benzoimidazol-2-yl)methyl)-2-phenylhydrazine (PBIP), and 1-((1-(morpholinomethyl)-1H-benzoimidazol-2-yl)methyl)-2-phenylhydrazine (MBIP) were synthesized and investigated as inhibitors for mild steel corrosion in 15% HCl solution using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. It was found that the inhibition efficiency of both the inhibitors increases with increase in concentration of inhibitors and decreases with increase in temperature. The inhibitors, PBIP and MBIP, show corrosion inhibition efficiency of 92.6% and 91.4% at 300 ppm concentration, respectively, at 303 K. Polarization studies showed that both the studied inhibitors were of mixed type in nature. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed for surface study of uninhibited and inhibited mild steel samples. The semi-empirical AM1 method was employed for theoretical calculations.  相似文献   
102.
ZnS nanoparticles implanted with 45 keV O5+ ion beam exhibited 83.6 % degradation of methyl blue in 2 h. This idea was utilized to fabricate nanocomposite system of ZnS and PMMA where ZnS nanoparticles were immobilized in PMMA film and irradiated with 45 keV O5+ ion beam at particle fluence of 2.5 × 1015, 1 × 1016 and 4 × 1016 particles/cm2. These irradiated batches of ZnS nanoparticle immobilized in PMMA batches revealed formation of porous structure characterized by scanning electron microscopy and these batches exhibited 54 % photocatalytic degradation of methyl blue in 80 min which was higher as compared to the pristine ZnS nanoparticles.  相似文献   
103.
The present study investigates the effect of hybrid fillers such as graphene nanoplatelets (GnPs) and Titanium di-oxide (TiO2) in polypropylene (PP) composites on the mechanical properties. The compatibilizing agent of Maleic anhydride grafted polypropylene (MAPP) are used in the polypropylene based composites to increase the interfacial adhesion between matrix and fillers. The experiments are designed according to L16 orthogonal array (OA) based design of experiments (DOE). The parameters selected for this study are GnPs, TiO2 and MAPP with four different levels are used.By using Orthogonal array and Taguchi based experimental design, the performance characteristics of tensile modulus, tensile strength, elongation at break and toughness can be analyzed with more objective through a small set of experiments.Taguchi based analysis are used to find out the optimal parameters to maximize the tensile properties for the GnPs and TiO2 reinforced PP hybrid composites. Further, analysis of variance (ANOVA) is investigated to identify the most significant parameters which influence the mechanical properties.From the analysis it was found that the optimal parameters of 3 ?wt% GnPs, 2 ?wt% TiO2 and 6 ?wt% MAPP for maximum tensile modulus and tensile strength. The most significant parameter for tensile modulus and tensile strength is GnPs followed by TiO2 and MAPP according to ANOVA analysis.  相似文献   
104.
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with an incompletely understood pathogenesis. Long-standing colitis is associated with increased risk of colon cancer. Despite the availability of various anti-inflammatory and immunomodulatory drugs, many patients fail to respond to pharmacologic therapy and some experience drug-induced adverse events. Dietary supplements, particularly saffron (Crocus sativus), have recently gained an appreciable attention in alleviating some symptoms of digestive diseases. In our study, we investigated whether saffron may have a prophylactic effect in a murine colitis model. Saffron pre-treatment improved the gross and histopathological characteristics of the colonic mucosa in murine experimental colitis. Treatment with saffron showed a significant amelioration of colitis when compared to the vehicle-treated mice group. Saffron treatment significantly decreased secretion of serotonin and pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, in the colon tissues by suppressing the nuclear translocation of NF-κB. The gut microbiome analysis revealed distinct clusters in the saffron-treated and untreated mice in dextran sulfate sodium (DSS)-induced colitis by visualization of the Bray–Curtis diversity by principal coordinates analysis (PCoA). Furthermore, we observed that, at the operational taxonomic unit (OTU) level, Cyanobacteria were depleted, while short-chain fatty acids (SCFAs), such as isobutyric acid, acetic acid, and propionic acid, were increased in saffron-treated mice. Our data suggest that pre-treatment with saffron inhibits DSS-induced pro-inflammatory cytokine secretion, modulates gut microbiota composition, prevents the depletion of SCFAs, and reduces the susceptibility to colitis.  相似文献   
105.
106.
Structurally thermostable mesoporous anatase TiO2 (m‐TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores‐directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high‐angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X‐ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high‐temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye‐sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m‐TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25–m‐TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56 %) in the P25–m‐TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60 %) of the device, compared to DSSCs with a monolayer of P25 as the electrode.  相似文献   
107.
According to the well-accepted mechanism, methyl-coenzyme M reductase (MCR) involves Ni-mediated thiolate-to-disulfide conversion that sustains its catalytic cycle of methane formation in the energy saving pathways of methanotrophic microbes. Model complexes that illustrate Ni-ion mediated reversible thiolate/disulfide transformation are unknown. In this paper we report the synthesis, crystal structure, spectroscopic properties and redox interconversions of a set of NiII complexes comprising a tridentate N2S donor thiol and its analogous N4S2 donor disulfide ligands. These complexes demonstrate reversible NiII-thiolate/NiII-disulfide (both bound and unbound disulfide-S to NiII) transformations via thiyl and disulfide monoradical anions that resemble a primary step of MCR's catalytic cycle.  相似文献   
108.
Lead halide hybrid perovskites have received massive research attention because of their unique inherent photophysical properties that driven them for potential application in the fields of photovoltaics, light-emitting devices, lasing, X-ray detector, and so on. Perovskite single crystals and nanocrystals are generally synthesized via various low-cost solution-processed techniques. The emergence of simple growth approaches of perovskite structures enable to fabricate low-cost and highly efficient devices. However, toxicity of Pb atoms and instability of perovskite structures obstruct further commercialization of these technologies. Recent efforts have been shifted to discover novel, eco-friendly, and stable lead-free metal halide perovskite (LFHP) materials and exploring their different growth processes for various device applications. This review aims to provide an up-to-date analysis of recent progress report on LFHPs and will mainly focus on their growth processes in the single crystalline and nanocrystalline forms. This review also tries to understand how the perovskite crystal structure impacts on their fundamental properties. In addition, we discuss the current progress in various field of applications and their future aspects.  相似文献   
109.
Quantum energy coherences represent a thermodynamic resource, which can be exploited to extract energy from a thermal reservoir and deliver that energy as work. We argue that there exists a closely analogous classical thermodynamic resource, namely, energy-shell inhomogeneities in the phase space distribution of a system’s initial state. We compare the amount of work that can be obtained from quantum coherences with the amount that can be obtained from classical inhomogeneities, and find them to be equal in the semiclassical limit. We thus conclude that coherences do not provide a unique thermodynamic advantage of quantum systems over classical systems, in situations where a well-defined semiclassical correspondence exists.  相似文献   
110.
Sinha BC  Roy SK 《Talanta》1975,22(9):763-765
The conventional method for separation of lead from a combined lead and barium sulphate precipitate by extraction with ammonium acetate has been critically studied. The results show that quantitative separation of lead is possible only when the molar concentration ratio of barium to lead is 4.2 or above, but at ratios below 4.2 the method fails because of the formation of a solid solution of lead and barium sulphates which is maximal at initial mole-ratio 0.42. The lead in the solid solution, however, forms a strong soluble complex with EDTA and can be quantitatively separated. Based on this, a gravimetric method has been worked out for determination of lead and barium in glass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号