首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9864篇
  免费   261篇
  国内免费   20篇
化学   5871篇
晶体学   162篇
力学   267篇
数学   733篇
物理学   3112篇
  2023年   94篇
  2022年   211篇
  2021年   162篇
  2020年   177篇
  2019年   240篇
  2018年   208篇
  2017年   233篇
  2016年   318篇
  2015年   212篇
  2014年   400篇
  2013年   786篇
  2012年   552篇
  2011年   659篇
  2010年   419篇
  2009年   408篇
  2008年   462篇
  2007年   441篇
  2006年   335篇
  2005年   286篇
  2004年   232篇
  2003年   165篇
  2002年   183篇
  2001年   117篇
  2000年   125篇
  1999年   86篇
  1998年   56篇
  1997年   58篇
  1996年   92篇
  1995年   104篇
  1994年   98篇
  1993年   92篇
  1992年   120篇
  1991年   86篇
  1990年   79篇
  1989年   92篇
  1988年   87篇
  1987年   91篇
  1986年   74篇
  1985年   109篇
  1984年   120篇
  1983年   82篇
  1982年   99篇
  1981年   97篇
  1980年   102篇
  1979年   94篇
  1978年   102篇
  1977年   84篇
  1976年   56篇
  1975年   61篇
  1974年   74篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
971.
A theoretical development is carried out to model the boundary conditions for Stokes flows near a porous membrane, which, in general, allows non-zero slip as well as normal flow at the surface. Two types of models are treated: an infinitesimally thin plate with a periodic array of circular apertures and a series of parallel slits. For Stokes flows, the mean normal flux and slip velocity are proportional to the pressure difference across the membrane and the average shear stress at the membrane, respectively. The appropriate proportionality constants which depend on the membrane geometry are calculated as functions of the porosity. An interesting feature of the results is that the slip at the membrane has, in general, a direction different from that of the applied shear for these models.  相似文献   
972.
A micromotor‐based strategy for energy generation, utilizing the conversion of liquid‐phase hydrogen to usable hydrogen gas (H2), is described. The new motion‐based H2‐generation concept relies on the movement of Pt‐black/Ti Janus microparticle motors in a solution of sodium borohydride (NaBH4) fuel. This is the first report of using NaBH4 for powering micromotors. The autonomous motion of these catalytic micromotors, as well as their bubble generation, leads to enhanced mixing and transport of NaBH4 towards the Pt‐black catalytic surface (compared to static microparticles or films), and hence to a substantially faster rate of H2 production. The practical utility of these micromotors is illustrated by powering a hydrogen–oxygen fuel cell car by an on‐board motion‐based hydrogen and oxygen generation. The new micromotor approach paves the way for the development of efficient on‐site energy generation for powering external devices or meeting growing demands on the energy grid.  相似文献   
973.
Thin‐film transistors can be used as high‐performance bioelectronic devices to accomplish tasks such as sensing or controlling the release of biological species as well as transducing the electrical activity of cells or even organs, such as the brain. Organic, graphene, or zinc oxide are used as convenient printable semiconducting layers and can lead to high‐performance low‐cost bioelectronic sensing devices that are potentially very useful for point‐of‐care applications. Among others, electrolyte‐gated transistors are of interest as they can be operated as capacitance‐modulated devices, because of the high capacitance of their charge double layers. Specifically, it is the capacitance of the biolayer, being lowest in a series of capacitors, which controls the output current of the device. Such an occurrence allows for extremely high sensitivity towards very weak interactions. All the aspects governing these processes are reviewed here.  相似文献   
974.
975.
Carbon nanomaterials have been extensively researched in the past few years owing to their interesting properties. The massive research efforts resulted in the emergence of carbon dots, which belong to the carbon nanomaterials family. Carbon dots (C‐dots) have garnered the attention of researchers mainly due to their convenient availability from organic as well as inorganic materials and also due to the novel properties they exhibit. C‐Dots have been said to overcome the era of quantum dots, referring to their levels of toxicity and biocompatibility. In this review, we focus on the discovery of C‐dots, their structure and composition, surface passivation to enhance their optical properties, the various synthetic methods used, their applications in different areas, and future perspectives. Emphasis has been given to greener approaches for the synthesis of C‐dots in order to make them cost effective as well as to improve their biocompatibility.  相似文献   
976.
Interest in the synthesis of hybrid substrates for surface‐enhanced Raman scattering (SERS) has surged recently. Hereof, in the present work, a hybrid SERS substrate CuO : Mn/Ag heterojunction has been synthesised. To accomplish this, the nanostructred Ag island film and CuO : Mn nanoparticles are synthesised by vacuum thermal evaporation method and sol–gel method respectively, and thereafter, a heterojunction between the CuO : Mn and Ag is fabricated by adsorption of CuO : Mn (10‐3 m in ethanol) on Ag island film. Further, the SERS sensitivity of CuO : Mn/Ag heterojunctions has been studied by probing methyl orange. We observed that with Mn‐doping in the lattice of CuO, the SERS signal is enhanced considerably because of ferromagnetic ordering in CuO : Mn. DFT/B3LYP/6‐311 G(d, p) method is used to calculate the energy of HOMO and LUMO level of methyl orange. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
977.
An atom economic and facile synthesis of novel dispiro–oxindole–pyrrolidines has been achieved via a three‐component tandem cycloaddition of azomethine ylide generated in situ from isatin and sarcosine by decarboxylative condensation with N‐aryl‐3‐benzylidene‐pyrrolidine‐2,5‐dione derivatives as dipolarophiles. The salient features of synthetic procedure are characterized by the mild reaction conditions, high yields, high regioselectivity and stereoselectivity, one‐pot procedure, and operational simplicity. This regioselectivity was assumed to be under the influence of π–π stacking interactions between the aromatic rings of azomethine ylide and N‐aryl‐3‐benzylidene‐pyrrolidine‐2,5‐diones that further control the exo–endo selectivity of the reaction 1,3‐dipolar cycloaddition. The regiochemistry and structures of the cycloadducts were determined with spectroscopic data.  相似文献   
978.
Microfabricated silica thin layer chromatography (TLC) plates have previously been prepared on patterned carbon nanotube forests. The high temperatures used in their fabrication reduce the number of hydroxyl groups on their surfaces. Fortunately, silica can be rehydroxylated. In diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), a silanol peak below 3740 cm?1 indicates a well‐hydroxylated silica surface that is fit for chromatography. Hydroxylations of our materials with HF are so effective that it is not possible to discern the position of this peak. In contrast, this signal is discernable when the plates are treated with NH4OH. To find a more convenient method for studying the surfaces of TLC plates, time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS) was considered. ToF‐SIMS is advantageous because multiple microfabricated TLC plates must be scraped to obtain enough silica for one DRIFT analysis, while static SIMS can be performed on very small regions (500 × 500 µm2 or less) of individual plates. Ratios of the SiOH+ and Si+ ToF‐SIMS signals for microfabricated TLC plates correlated well with ~3740 cm?1 silanol peaks from DRIFT. Thus, SIMS allows direct analysis of all of our treated and untreated plates, including those hydroxylated with HF. The best hydroxylation condition for HF, which was better than any studied for NH4OH, was around 150 ppm at room temperature. The best hydroxylation condition for NH4OH was 50 °C for 72 h. ToF‐SIMS versus DRIFT results of commercial TLC plates were also obtained and evaluated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号